CS 70 Discrete Mathematics and Proloal)ility Theory

Summer 2020 Course Notes omework 2

Due: Sunday, July 5, 10:00 pm
Grace period until Sunday, July 5, 11:59 pm

| Exam Policy and Practice

Please read the exam policy carefully before proceeding. This question is designed to familiarize
you with some of the things you will have to do during the exam.

1. Fill out the following Google Form to submit the Zoom link you will be using:

You must use this Zoom link for this assignment, as well as for the exams.

2. Start the Zoom call whose link you provided above. Turn on your microphone and webcam.
Turn off your speaker. Share your entire desktop (not just a particular window).

3. Start recording via Zoom. Record locally so that in the event of your internet connection
dying your meeting still continues to be recorded.

4. Hold your CalID next to your face and record yourself saying your name into the webcam.
Both your face and your entire CallD should be visible in the video. We should be able to
read your name and SID. This step should take at least 3 seconds. See figure 1. If you do
not have a CallD for some reason, please hold up some document which has an image of you

and proves your identity, such as a driver’s license.

Discrete Mathematics and Probability Theory

Note 9

9
B
L
s
(X

Figure 1: ID card demonstration. Do not actually black out your SID and name.

CS 70, Summer 2020, Homework 2

https://docs.google.com/document/d/1kj83rPvxgoLuaafkJLcZsmIslWjrhxDujfng4K5oSPI/edit?usp=sharing

5. Turn your webcam/laptop around 360° slowly so that we can see your entire room clearly.
There should be no uncovered screens anywhere in the room during your exam. Only admin
TAs and instructors will be able to see your videos (both for this assignment and for the actual

exams).

6. Position your webcam/laptop in such a way that we can see your upper body from your head
to your hands. Your face and hands must be in the frame at all times. Your phone should
also be in the frame at all times, turned upside down. If you do not have sufficient space to
include your head, then please make sure to include your hands, phone, and as much of your
torso as possible. See figure 2.

EECS 70 Diserete Mathematies and Probability Theory
Summer 2

020

Po

9
B
]
s
-
e

Figure 2: Demonstration of taking your exam. Your setup should look like this while you are taking the
exam.

7. Your microphone should be on at all times. We should be able to see the time on your desktop
at all times.

8. Write down following the honor code in this state. Then read it out loud. This will ensure
you understand the positioning requirement, and have enabled audio.

I pledge to uphold the university’s honor code: to act with honesty, integrity, and respect for
others, including their work. By signing, I ensure that all written homework I submit will be
in my own words, that I will acknowledge any collaboration or help received,and that I will
neither give nor receive help on any examinations.

9. Stop the recording. Upload your video to Google drive and submit the link to the video using
this Google Form. You must make sure that the link sharing permissions are set so that we
may view the video. Also, please submit your zoom link to this this google form. Afterwards,
please write down the magic words from each google form to indicate you have down so.

Link for policy:
https://docs.google.com/document/d/1kj83rPvxgoLuaafkJL.cZsmIsIWjrhxDujtngd K50SPI/edit?usp=sharing
Link to upload video:

CS 70, Summer 2020, Homework 2 2

https://forms.gle/emBA5xzK83wn1uRH8
https://forms.gle/Co9Rdhx6QV413PFG6

https://forms.gle/emBAS5xzK83wn1uRHS
Link to share zoom link:
https://forms.gle/Co9Rdhx6QV413PFG6

2 Counta]oility Practice

(a) Do (0,1) and Ry = (0,) have the same cardinality? If so, either give an explicit bijection
(and prove that it is a bijection) or provide an injection from (0, 1) to (0,c0) and an injection
from (0,e) to (0,1) (so that by Cantor-Bernstein theorem the two sets will have the same
cardinality). If not, then prove that they have different cardinalities.

(b) Is the set of strings over the English alphabet countable? (Note that the strings may be arbi-
trarily long, but each string has finite length. Also the strings need not be real English words.)
If so, then provide a method for enumerating the strings. If not, then use a diagonalization
argument to show that the set is uncountable.

(c) Consider the previous part, except now the strings are drawn from a countably infinite alphabet
/. Does your answer from before change? Make sure to justify your answer.

3 Fixed Points

Consider the problem of determining if a function F has any fixed points; that is, we want to know
if there is any input x such that F(x) outputs x. Prove that this problem is undecidable.

4 The Complexity Hierarchy

The complexity hierarchy is a monument to our collective understanding of computation and its
limitations. In fact, you may already be familiar with the classes P and NP from CS61B. In this
problem, we will focus on decision problems like the Halting Problem, where the output is Yes
(True) or No (False), and explore the classes RE, coRE, and R.

(a) A problem is recursively enumerable (RE) if there exists a program P that can print out all the
inputs for which the answer is Yes, and no inputs for which the answer is No. The program P
can print out a given input multiple times, so long as every input gets printed eventually. The
program P can run forever, so long as every input which should be printed is at a finite index
in the printed output.

Prove that the Halting Problem belongs in RE. Namely, prove that it is possible to write a
program P which:
* runs forever over all possible programs M and inputs x, and prints out strings to the
console,
« for every (M, x), if M(x) halts, then P eventually prints out (M, x),
* for every (M, x), if M(x) does NOT halt, then P never prints out (M, x).

CS 70, Summer 2020, Homework 2 3

In this context, P is called an enumerator. (Hint: Consider the tail of a dove.)

(b) Anequivalent definition of RE is as follows: A problem belongs in RE if there exists a program
P’ that will output Yes when given an input x for which the answer is Yes. If the answer is
No, then P’(x) may output No or loop forever. As an optional exercise, you should be able to
convince yourself that this is indeed an equivalent definition.

Prove that the Halting Problem belongs in RE using this equivalent definition. Namely, prove
that it is possible to write a program P’ which:

* takes as input a program M and input x.

e if M halts on input x, then P’ should print Yes.

e if M does not halt on input x, then P’ may output No or loop forever.
In this context, P’ is called a recognizer.

(c) As you might suspect, a problem is co-recursively enumerable (coRE) if its complement is in
RE. The complement of a decision problem A is another problem A’ where A’(x) is Yes iff
A(x) is No, and A’(x) is No iff A(x) is Yes. State the complement of the Halting Problem.

(d) Finally, a problem belongs in the class R if it is computable, meaning there exists a program P
that answers Yes when the answer is Yes, and answers No when the answer is No. By definition
then, the problem is a computable function if it is computable.

We know that the TestHalt is not computable, and that the Halting Problem belongs in RE.
Prove by contradiction that the Halting Problem cannot belong in coRE.

3 Build—Up Error?

What is wrong with the following "proof"? In addition to finding a counterexample, you should
explain what is fundamentally wrong with this approach, and why it demonstrates the danger
build-up error.

False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is con-
nected.

Proof: We use induction on the number of vertices n > 1.

Base case: There is only one graph with a single vertex and it has degree 0. Therefore, the base
case is vacuously true, since the if-part is false.

Inductive hypothesis: Assume the claim is true for some n > 1.

Inductive step: We prove the claim is also true for n+ 1. Consider an undirected graph on n vertices
in which every vertex has degree at least 1. By the inductive hypothesis, this graph is connected.
Now add one more vertex x to obtain a graph on (n+ 1) vertices, as shown below.

CS 70, Summer 2020, Homework 2 4

n - vertex graph

All that remains is to check that there is a path from x to every other vertex z. Since x has degree
at least 1, there is an edge from x to some other vertex; call it y. Thus, we can obtain a path from x
to z by adjoining the edge {x,y} to the path from y to z. This proves the claim for n+ 1.

6 Connectivity

Consider the following claims regarding connectivity:

(a) Prove: If G is a graph with n vertices such that for any two non-adjacent vertices u and v, it
holds that degu +degv > n— 1, then G is connected.
[Hint: Show something more specific: for any two non-adjacent vertices u and v, there must

be a vertex w such that u and v are both adjacent to w.]

(b) Give an example to show that if the condition degu + degv > n — 1 is replaced with degu +
degv > n—2, then G is not necessarily connected.

(c) Prove: For a graph G with n vertices, if the degree of each vertex is at least n/2, then G is
connected.

(d) Prove: If there are exactly two vertices with odd degrees in a graph, then they must be in the
same connected component (meaning, there is a path connecting these two vertices).

[Hint: Proof by contradiction.]

7 Triangu]ar Faces

Suppose we have a connected planar graph G with v vertices and e edges such that e = 3v — 6.
Prove that in any planar drawing of G, every face must be a triangle; that is, prove that every face
must be incident to exactly three edges of G.

8 Binary Trees

You have seen the recursive definition of binary trees from lecture and from previous classes. Here,
we define binary trees in graph theoretic terms as follows (Note: here we will modify the definition
of leaves slightly for consistency).

* A binary tree of height > 0 is a tree where exactly one vertex, called the root, has degree 2,
and all other vertices have degrees 1 or 3. Each vertex of degree 1 is called a leaf. The height
h is defined as the maximum length of the path between the root and any leaf.

CS 70, Summer 2020, Homework 2 5

* A binary tree of height O is the graph with a single vertex. The vertex is both a leaf and a
root.

(a) Let T be a binary tree of height > 0, and let 4(T') denote it’s height. Let r be the root in 7 and
u and v be it’s neighbors. Show that removing r from 7 will result in two binary trees, L,R
with roots u and v respectively. Also, show that #(7T') = max(h(L),h(R))+ 1

(b) Using the graph theoretic definition of binary trees, prove that the number of vertices in a
binary tree of height / is at most 241 — 1

(c) Prove that all binary trees with n leaves have 2n — 1 vertices

9 Euclid’s Algorithm

(a) Use Euclid’s algorithm from lecture to compute the greatest common divisor of 527 and 323.
List the values of x and y of all recursive calls.

(b) Use extended Euclid’s algorithm from lecture to compute the multiplicative inverse of 5 mod
27. List the values of x and y and the returned values of all recursive calls.

(c) Find x (mod 27) if 5x4+26 =3 (mod 27). You can use the result computed in (b).

(d) Assume a, b, and c are integers and ¢ > 0. Prove or disprove: If a has no multiplicative inverse
mod ¢, then ax = b (mod c) has no solution.

10 GCD Proof

Let n, x be positive integers. Prove that x has a multiplicative inverse modulo » if and only if
gcd(n,x) = 1. (Hint: Remember an iff needs to be proven both directions. The gcd cannot be 0 or
negative.)

11 Homevvork PI’OCGSS and StUdy GI‘OU.p

Citing sources and collaborators are an important part of life, including being a student! We also
want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

1. What sources (if any) did you use as you worked through the homework?

2. If you worked with someone on this homework, who did you work with? List names and
student ID’s. (In case of homework party, you can also just describe the group.)

CS 70, Summer 2020, Homework 2 6

3. How did you work on this homework? (For example, [first worked by myself for 2 hours,
but got stuck on problem 3, so I went to office hours. Then I went to homework party for a
few hours, where I finished the homework.)

4. Roughly how many total hours did you work on this homework?

CS 70, Summer 2020, Homework 2 7

	Exam Policy and Practice
	Countability Practice
	Fixed Points
	The Complexity Hierarchy
	Build-Up Error?
	Connectivity
	Triangular Faces
	Binary Trees
	Euclid's Algorithm
	GCD Proof
	Homework Process and Study Group

