"Theorem" All students love CS70.
"Proof:" Let P(n) be "given a set of n students, they all love
CS 70".
Base case: Plo) is trivially true.
Inductive Step:
Assume P(n) is true.
Suppose we're given a set of students & SI, Sz,, Sn, Sn+13
By inductive hypothesis, Students in {S1,, Sn} all love
CS70 Similarly, students in § Sz,, Snti] all love CS70
=) $S_{1,}, S_{N+1}$ all love CS70.
By the principle of induction, since P(0) is true and
VneW, P(n) => P(n+1), we know the statement is true

Q: Do you agree? What's wrong?

P(o) 为P()

So we didn't really prove "∀n = NU, p(n) => P(n+1)"

٥

1. Induction

Induction is a technique for proving $\forall n \in \mathbb{N}$, P(n)1.1 Simple Induction P(0) => P(1) => P(2) => P(3) =>... To prove P(n) is true for all n = 1N, use Base case : check P(O) holds Inductive Step: Show P(k) => P(k+1) for all k = IN. E.g. Prove that $\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1}-a}{r-1}$ where $A \in \mathbb{R}, r \neq 1, n \in \mathbb{N}$ <u>Pf</u>: Let P(n) be the statement $\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1}-a}{r-1}$. <u>Base case</u>: P(o) holds, because $\sum_{j=0}^{n} ar^{j} = a = \frac{ar-a}{r-1}$. Inductive Step: WTS $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$. Inductive hypothesis : Assume P(k) is true, i.e. assume $\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+1}-a}{r-1}$ want to show $\sum_{j=0}^{k} ar^{j} = \frac{ar^{k+2}-a}{r-1}$ $\sum_{j=0}^{k+1} ar^{j} = \sum_{j=0}^{k} ar^{j} + ar^{k+1}$ $\frac{-q}{r-1} + \frac{ar^{k+1}}{r-1}$ $\frac{ar^{k+2}-a}{ar^{k+2}-a}$ $IH \underline{Ar^{k+l}}_{-a}$

2-colo rable.

	, Nant to show a map with R+1 lines is 2-colorable.
leis	Given a map with k+1 lines, remove a line e.
) 5	By IH, the new map is 2-colorable.
-	Color the new map.
	5/67 G7 - L.
	Add & back.
	I divides the colored map into two sides.
	Pick one side and swap the colors.
	The result is still a valid coloring, because for each
,	shared border, it's either I or not I.
	() if it's not L, two sides have different colors by IH;
	(2) if it's l, two sides now have different colors because of
	the swap.

E.g. Prove the sum of the first k odd numbers is a perfect square. <u>Pf</u>: Let P(n) be the statement $\sum_{x=1}^{n} (2x-1) = cq^{2}$ for some $m \in \mathbb{Z}^{+}$ Inductive Step : Assume P(k) holds for some $k \in \mathbb{Z}^{+}$, i.e. $\sum_{i=1}^{\infty} (2X-i) = m^{2}$ for some $m, k \in \mathbb{Z}^{+}$ want to show P(k+1) holds, i.e. $\sum_{x=1}^{k+1} (2x-1)$ $\tilde{\Sigma}(2x-1)$ + (2k+1) = $m^2 + 2k+1$ <u>;</u>; İŞ Juare

$$\begin{bmatrix} |=1, |+3=4=2^{2}, |+3+5=9=3^{2}, ... \end{bmatrix}$$
Let P(n) be the statement $\hat{\sum}(2x-1) = n^{2}$.
Base case: P(1) holds because $|=1=1^{2}$.
Thouctive Step: Assume $\hat{\sum}(2x-1) = k^{2}$ for some $k \in \mathbb{Z}^{+}$.
Then $\hat{\sum}(2x-1) = (\hat{\sum}(2x-1)) + 2k+1$
 $x=1$
 $I = k^{2} + 2k + 1$
 $= (k+1)^{2}$.

1.2 Strong Induction

To prove P(n) is true for all $n \in \mathbb{N}$, use <u>Base case:</u> check P(0) holds. <u>Inductive Step:</u> Show $\forall R \in \mathbb{N}$, $[P(0) \land \dots \land P(R)] \Rightarrow P(R+1)$.

E.g.	Prove t	hat if	n is an	integer	greater	than 1,	then	n
	can be	Writte	n as a	product o	t primes	•		

Pf: Base case: 2 is a prime and a product of itself,
so the statement holds for n=2.
Inductive Step: Assume all integers 2= j = k can
be written as a product of primes.
Consider R+1. If k+1 is prime, we're done.
Otherwise, k+1 = ab for some integers a, b with
$a \leq a, b \leq k+1.$

1.3 Recursion

To prove a statement holds for recursively defined objects, use <u>Base case</u>: the result holds for all elements specified in the base case <u>Recursive Step</u>: Show it the statement holds for each element used to construct new elements, then it holds for these new elements.

E.g. Binary trees can be constructed recursively.
Define height h(T) recursively
Base case $(T = root) : h(T) = 0$
Recursive Step $(T = T_1 \cdot T_2)$: $h(T) = + max(h(T_1), h(T_2))$
Define number of vertices n(T) recursively
Base case $(T = root)$: $n(T) = 1$.
Recursive Step ($T = T_1 \cdot T_2$): $n(T) = 1 + n(T_1) + n(T_2)$
Prove $n(T) \leq 2^{h(T)+1} - 1$ for any binary tree T
Pf: Base case: T=root. Then n(T) = 1 and h(T) =0
Statement holds because $1 \le 2^{0+1} - 1 = 1$
Recursive Step: Consider T=T. T2.
want to show $n(T) \leq 2^{h(T)+1} - 1$.

Notice that n(T) = $| + n(T_1) + n(T_2)$ / Ih 4 $+ (2^{h(t_1)+1} - 1) + (2^{h(t_2)+1} - 1)$ 2^{h(Ti)+1} h(T_)+1 2 h(T=)+1 h(Ti) +1 $\leq 2 \cdot \max$ $max(h(T_1), h(T_2)) + 1$ 2 1 h(T) 2 h(T) +1 - 1 2