Lecture 10: Cryptography
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Recall: XOR

Recall the XOR operation: N
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Notice that for any bits x, b we have (x ® b) & b = x
C—

L’ﬁ




One-Time Pad
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Decryption:

Notice that D(E(m)) = (m @& k) @ k = m, i.e. Bob always receives
the message Alice sent.
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But what if | (Alice) want to send my credit card information to
Amazon (Bob) to make a purchase?
» Not practical; | would need to somehow communicate with
Amazon to agree on a key for every single purchase.

» And every single user would've had to do this.
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One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no

longer unbreakable:
» k is at least as long as m;

» k truly random (not generated by a simple computer
function);

» each key is used only once;

» there should only be two copies of the key; one for Alice and
one for Bob.

Solve these issues with public-key cryptography: use pairs of keys
» public keys: everyone knows!

» private keys: only Bob knows.
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RSA Protocol

Everyone can send messages to Bob.
For now, let's say Alice wants to send a message m to Bob.

Setup:

» Bob chooses two large (2048-bit) distinct primes p, g.

» Bob chooses e such that ged(e,(p —1)(g — 1)) = 1.

» the public key is (N, e), where N = pq.

» Bob computes the private key d := e~ ! mod (p —1)(g — 1).
Encryption:

» Alice encrypts c = E(m) :== m® mod N
Decryption:

» Bob decrypts D(c) :=c? mod N
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# TODO

We need to analyze:
» Correctness: D(E(m)) = m?

» Efficiency: Can Alice and Bob perform their steps efficiently?
» Security: Can Eve break it?



Fermat's Little Theorem

Theorem: Let p be a prime and a # 0 (mod p). Then
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how?77?
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RSA Efficiency

Setup

» Bob chooses two large distinct primes p and gq.
how?77
» Bob chooses e such that ged(e,(p—1)(g — 1)) = 1.
how??? (choose a prime, like 3)
» Bob computes d := e~ ! mod (p—1)(g —1).
how??? (extended Euclidean algorithm is fast!)
Encryption:
» Alice encrypts ¢ = E(m) := m® mod N.
how??? (repeated squaring is fast!)
Decryption:

» Bob decrypts D(c) := c? mod N.
how??? (repeated squaring is fast!)
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RSA Efficiency: Sampling Primes

We need two large (2048-bit) primes.

» By the Prime Number Theorem, number of primes < N is at

N
least (N

» We need to generate and check ~ In N primes. This is linear
in the number of bits of N.
» ...but how to check primes?

» there is an efficient algorithm that tests if N is prime
(polynomial time in the number of bits of ).
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efficient algorithm for finding m.

We believe Eve cannot break RSA.
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to compute d.
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RSA Security

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and m® mod N, there is no
efficient algorithm for finding m.

We believe Eve cannot break RSA.

» Eve can break RSA by factoring N = pq to get (p —1)(qg — 1)
to compute d.

» But prime factorization is hard!

» For large N, no efficient, non-quantum algorithm is known.
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Replay Attack

Does Eve really need to know d to attack?

» Suppose my credit card number is m.

» | send Amazon E(m) to make a purchase.
» Eve can't recover m from E(m).
>

But Eve was listening to our communication and now she
knows E(m).

Eve sends E(m) to Amazon.

vV Yy

Now Eve can use my credit card.
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Defense Against Replay Attacks

Even secure protocol can be vulnerable, need careful
implementation.

To defend against replay attacks,
» before encrypt m, randomly generate a string s.
» Send E(concatenate(m,s)).

» |f Amazon gets same message twice, reject.
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Flipping RSA: Digital Signature

RSA can be used as in proof of identity.

» How does Alice know the receiver is Bob?

» Bob could prove his identity by showing Alice d, but he

doesn’t want to do that.

» Alice chooses a message m and asks Bob to send her m¢

mod M.
» Alice can verify (m?)¢ = m (mod N).

E@("’» = D6m) =m
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Digital Signature Attack

Should Bob sign arbitrary messages?

» Alice encrypts a top-secret message m and sends it to Bob.
Eve intercepts the cipher E(m).
Eve chooses a number r and asks Bob to sign r¢E(m).
Bob agrees and sends Eve (r¢E(m))? mod N.

Now Eve knows (r¢E(m))? = r*m®® = rm (mod N).
1

vvyyyvyy

Eve knows r; so Eve computes r—* mod N to recover m.



THE END!

THANK'YOU

Thank you for coming]!



