Lecture 10: Cryptography

PROTOCOL. SPECS WITH THOSE. BUSYBODIES
SCHNEIER AND RIVEST, ALWAYS TAKING ALES
SIDE, ALWAYS LABELING M THE ATIACKER.

IM SURE YOUVE HEARD ALL ABOUT THIS YES, IT'S TRUE. | BROKE BOB'S
SORDID AFFAIR IN THOSE. G0sS'\PY CRYPTOGRAPHIC PRIVATE. KEY AND EXTRACTED THE
TEXT OF HER MESSAGES. IUT 00&'57
ANYONE. REALIZE HOW MUCH T HURT
/

Credit: https://xkcd.com/177/

E SAID 1T WAS NOTHING, BUT | 010N T WANT T BELEVE- || SO BEFORE You <0 QUICKLY LABEL
gvmws FR'&?\TTHE PUBLIC-KEY || OF COURSE ON SOME LEVEL ||ME A THIRD PARTY T THE COMM-
AUTHENTICATED SIGNATURES ONTHE. || | REALIZED WS AKNOWN- [|UNICATION, JUST REMEMBER
FILES To THE LIPSTICK HEART SMEARED || PLAINTEXT ATACK. BT | | LOVED HM FIRST, WE

ON THE DISK SCREAMED "AUCE. COULDNT ADMIT 1T UNTIL|| HAP SOMETHING AND SHE

! _ | AW FOR MYSELY, / TORE |T AWAY. SHES
THE ATTACKER, NOT ME-
|
NOT EVE.
Credut: S aﬁnih!

Basic Setup

Eve hears I@

E(M)

Alice knows
message M

Alice sends i@

To Bob E(M)

Alice Bob

Sender receiver
Credit: https://flylib.com/books/en/1.581.1.188/1/

Recall: XOR

Recall the XOR operation: N

b
|y |x08 (XOB®b
00 o 0
01 1
10| 1 ?
11| o ,

Notice that for any bits x, b we have (x ® b) & b = x
C—

L’ﬁ

One-Time Pad

Alice (the sender) wants to send a n-bit message m to Bob (the
receiver).

Setup:
» Alice and Bob generate a random key k.
Encryption:

Decryption:

Notice that D(E(m)) = (m @& k) @ k = m, i.e. Bob always receives
the message Alice sent.

One-Time Pad

Alice (the sender) wants to send a n-bit message m to Bob (the
receiver).

Setup:

» Alice and Bob generate a random key k.
Encryption:

» Alice encrypts ¢ = E(m) := m & k.
Decryption:

Notice that D(E(m)) = (m @& k) @ k = m, i.e. Bob always receives
the message Alice sent.

One-Time Pad

Alice (the sender) wants to send a n-bit message m to Bob (the
receiver).

Setup:

» Alice and Bob generate a random key k.
Encryption:

» Alice encrypts ¢ = E(m) := m & k.
Decryption:

» Bob decrypts D(c) := c @ k.

Notice that D(E(m)) = (m @& k) ® k = m, i.e. Bob always receives
the message Alice sent.

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no
longer unbreakable:

» k is at least as long as m;

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no
longer unbreakable:

» k is at least as long as m;

» k truly random (not generated by a simple computer
function);

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no

longer unbreakable:
» k is at least as long as m;

» k truly random (not generated by a simple computer
function);

» each key is used only once;

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no

longer unbreakable:
» k is at least as long as m;
» k truly random (not generated by a simple computer
function);
» each key is used only once;

» there should only be two copies of the key; one for Alice and
one for Bob.

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no

longer unbreakable:
» k is at least as long as m;
» k truly random (not generated by a simple computer
function);
» each key is used only once;

» there should only be two copies of the key; one for Alice and
one for Bob.

But what if | (Alice) want to send my credit card information to
Amazon (Bob) to make a purchase?
» Not practical; | would need to somehow communicate with
Amazon to agree on a key for every single purchase.

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no
longer unbreakable:
» k is at least as long as m;
» k truly random (not generated by a simple computer
function);
» each key is used only once;
» there should only be two copies of the key; one for Alice and
one for Bob.

But what if | (Alice) want to send my credit card information to
Amazon (Bob) to make a purchase?
» Not practical; | would need to somehow communicate with
Amazon to agree on a key for every single purchase.

» And every single user would've had to do this.

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no

longer unbreakable:
» k is at least as long as m;

» k truly random (not generated by a simple computer
function);

» each key is used only once;

» there should only be two copies of the key; one for Alice and
one for Bob.

Solve these issues with public-key cryptography: use pairs of keys

» public keys: everyone knows!

One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no

longer unbreakable:
» k is at least as long as m;

» k truly random (not generated by a simple computer
function);

» each key is used only once;

» there should only be two copies of the key; one for Alice and
one for Bob.

Solve these issues with public-key cryptography: use pairs of keys
» public keys: everyone knows!

» private keys: only Bob knows.

RSA Protocol

Everyone can send messages to Bob.
For now, let’s say Alice wants to send a message m to Bob.

Setup:
» Bob chooses two large (2048-bit) distinct primes p, g.

Encryption:

Decryption:

RSA Protocol

Everyone can send messages to Bob.
For now, let's say Alice wants to send a message m to Bob.

Setup:
» Bob chooses two large (2048-bit) distinct primes p, g.
» Bob chooses e such that ged(e,(p—1)(g — 1)) = 1.

Encryption:

Decryption:

RSA Protocol

Everyone can send messages to Bob.
For now, let's say Alice wants to send a message m to Bob.

Setup:
» Bob chooses two large (2048-bit) distinct primes p, g.
» Bob chooses e such that ged(e,(p—1)(g — 1)) = 1.
» the public key is (N, e), where N = pq.

Encryption:

Decryption:

RSA Protocol

Everyone can send messages to Bob.
For now, let's say Alice wants to send a message m to Bob.

Setup:

» Bob chooses two large (2048-bit) distinct primes p, g.

» Bob chooses e such that ged(e,(p—1)(g —1)) = 1.

» the public key is (N, e), where N = pq.

» Bob computes the private key d := e~ mod (p —1)(g — 1).
Encryption:

Decryption:

RSA Protocol

Everyone can send messages to Bob.
For now, let's say Alice wants to send a message m to Bob.

Setup:

» Bob chooses two large (2048-bit) distinct primes p, g.

» Bob chooses e such that ged(e,(p —1)(g — 1)) =1.

» the public key is (N, e), where N = pq.

» Bob computes the private key d := e™! mod (p —1)(q — 1).
Encryption:

» Alice encrypts ¢ = E(m) := m® mod N
Decryption:

RSA Protocol

Everyone can send messages to Bob.
For now, let's say Alice wants to send a message m to Bob.

Setup:

» Bob chooses two large (2048-bit) distinct primes p, g.

» Bob chooses e such that ged(e,(p —1)(g — 1)) = 1.

» the public key is (N, e), where N = pq.

» Bob computes the private key d := e~ ! mod (p —1)(g — 1).
Encryption:

» Alice encrypts c = E(m) :== m® mod N
Decryption:

» Bob decrypts D(c) :=c? mod N

5% C 4 N
)

TODO

We need to analyze:
» Correctness: D(E(m)) = m?

TODO

We need to analyze:
» Correctness: D(E(m)) = m?
» Efficiency: Can Alice and Bob perform their steps efficiently?

TODO

We need to analyze:
» Correctness: D(E(m)) = m?

» Efficiency: Can Alice and Bob perform their steps efficiently?
» Security: Can Eve break it?

Fermat's Little Theorem

Theorem: Let p be a prime and a # 0 (mod p). Then

Groal: £D=1 (mod p). -
RS Chomaia todlomgin

Proof. f‘ ﬁO,l,Z.,...,P-q) — %0/\, ---,?‘l} o >

Q)
2C > ax med p f ’i<)) j

9 a‘o‘jedc(ov\. @ ' :
[N

S(n& -5(6) = Oa MA P =D ﬂ‘M'P =0 , %\/L/...‘/?ﬂ} “%'&(l) P-1
Vm‘l ﬁ(x) o Cmbd P)) .--Jj(P’D3.
p-l O\X.":.[AP\ |
P-l P\ -1 4
= T =THH= T =6 T% (mdp)
= Y= x=I S

! V=, .., v

' s
e P(D 0 pring jv'gcér“(;(,g) =] DX medue p exiss,

Y] P = nP-
(BYE= = o ([T (mdp) 2 1= (el

| M1 05C [3Wime.
(roal : lﬂ_) Ko s (od
c,-—T(m /‘\D /N %m t%zs (rwd m)

Notiee that O < D(Blw) ¢N-1 | Fnd we & oy

=3
% only need 13 Show D(E(N) =0 (med £)

E(m) ‘:\‘f‘f_:/?‘_\‘ ELY_C (mdN) Find me all yefughiang 1
DA = <Min = ¢4 (md 3tk |

ke,
D(ré(‘““% B = (i < e (W
o M (md 0]

Croal med =

FLT: pire p, and m 30 (md o,

RSA correctness (mP? =1 (med P

Theorem: Let D, E be the RSA decryption and RSA encryption
functions respectively. Then D(E(m)) = m, i.e. RSA protocol
always decrypts correctly. T

med = (mool) N=Pq
Proof. fot; « = meol ETOT = m (mdN) =

Since ed =| (med (p-n (40, 5 ﬂk-&ZL CO\ -] =k Cp-D(g,
Then = = m +k<\> D(4)

p-I
¢ S R AN RS- =7 J

lj'm DCWAP) X =0= m(.md P) [Sinw Y. q,&kCPWMCs e,

Thas | Em (med Y ¥4 a) =,

b .
=m (mdl),z 9 RT, the stlain 5

| \mm\w mocluho N =9, -
Netia that > =m % a 5 e, X =m (mod N

RSA Efficiency

Setup

» Bob chooses two large distinct primes p and gq.
how?77?

€ St 4 (e, (ign) =

Encryption:

Decryption:

RSA Efficiency

Setup

» Bob chooses two large distinct primes p and gq.
how?77?

» Bob chooses e such that ged(e,(p—1)(g — 1)) = 1.
how??? (choose a prime, like 3) -

el ond (pogn

Encryption:

Decryption:

RSA Efficiency

Setup

» Bob chooses two large distinct primes p and gq.
how?77?

» Bob chooses e such that ged(e,(p—1)(g — 1)) = 1.
how??? (choose a prime, like 3)

» Bob computes d := e~ ! mod (p—1)(g —1).
how??? (extended Euclidean algorithm is fast!)

Encryption:
E(m) = m*%n

Decryption:

RSA Efficiency

Setup

» Bob chooses two large distinct primes p and gq.
how?77?

» Bob chooses e such that ged(e,(p—1)(g — 1)) = 1.
how??? (choose a prime, like 3)

» Bob computes d := e~ ! mod (p—1)(g —1).
how??? (extended Euclidean algorithm is fast!)

Encryption:

» Alice encrypts ¢ = E(m) := m® mod N.
how??? (repeated squaring is fast!)

Decryption:

D(e) = ¢ %N

RSA Efficiency

Setup

» Bob chooses two large distinct primes p and gq.
how?77
» Bob chooses e such that ged(e,(p—1)(g — 1)) = 1.
how??? (choose a prime, like 3)
» Bob computes d := e~ ! mod (p—1)(g —1).
how??? (extended Euclidean algorithm is fast!)
Encryption:
» Alice encrypts ¢ = E(m) := m® mod N.
how??? (repeated squaring is fast!)
Decryption:

» Bob decrypts D(c) := c? mod N.
how??? (repeated squaring is fast!)

RSA Efficiency: Sampling Primes

We need two large (2048-bit) primes.

» By the Prime Number Theorem, number of primes < N is at

N
least (N

RSA Efficiency: Sampling Primes

We need two large (2048-bit) primes.
» By the Prime Number Theorem, number of primes < N is at
least —N__.
In(N) &

» We need to generate and check ~ In N primes. This is linear
in the number of bits of N.

RSA Efficiency: Sampling Primes

We need two large (2048-bit) primes.

» By the Prime Number Theorem, number of primes < N is at

N
least (N

» We need to generate and check ~ In N primes. This is linear
in the number of bits of N.

» ...but how to check primes?

RSA Efficiency: Sampling Primes

We need two large (2048-bit) primes.

» By the Prime Number Theorem, number of primes < N is at

N
least (N

» We need to generate and check ~ In N primes. This is linear
in the number of bits of N.
» ...but how to check primes?

» there is an efficient algorithm that tests if N is prime
(polynomial time in the number of bits of).

RSA Security

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and m® mod N, there is no
efficient algorithm for finding m.

We believe Eve cannot break RSA.

» Eve can break RSA by factoring N = pq to get (p —1)(qg — 1)
to compute d.

RSA Security

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and m® mod N, there is no
efficient algorithm for finding m.

We believe Eve cannot break RSA.

» Eve can break RSA by factoring N = pq to get (p —1)(qg — 1)
to compute d.

» But prime factorization is hard!

RSA Security

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and m® mod N, there is no
efficient algorithm for finding m.

We believe Eve cannot break RSA.

» Eve can break RSA by factoring N = pq to get (p —1)(qg — 1)
to compute d.

» But prime factorization is hard!

» For large N, no efficient, non-quantum algorithm is known.

Replay Attack

Does Eve really need to know d to attack?

» Suppose my credit card number is m.

Replay Attack

Does Eve really need to know d to attack?
» Suppose my credit card number is m.

» | send Amazon E(m) to make a purchase.

Replay Attack

Does Eve really need to know d to attack?
» Suppose my credit card number is m.
» | send Amazon E(m) to make a purchase.

» Eve can't recover m from E(m).

Replay Attack

Does Eve really need to know d to attack?
» Suppose my credit card number is m.
» | send Amazon E(m) to make a purchase.
» Eve can't recover m from E(m).

» But Eve was listening to our communication and now she
knows E(m).

Replay Attack

Does Eve really need to know d to attack?

» Suppose my credit card number is m.

» | send Amazon E(m) to make a purchase.
» Eve can't recover m from E(m).
>

But Eve was listening to our communication and now she
knows E(m).

Eve sends E(m) to Amazon.

v

Replay Attack

Does Eve really need to know d to attack?

» Suppose my credit card number is m.

» | send Amazon E(m) to make a purchase.
» Eve can't recover m from E(m).
>

But Eve was listening to our communication and now she
knows E(m).

Eve sends E(m) to Amazon.

vV Yy

Now Eve can use my credit card.

Defense Against Replay Attacks

Even secure protocol can be vulnerable, need careful
implementation.

To defend against replay attacks,

» before encrypt m, randomly generate a string s.

Defense Against Replay Attacks

Even secure protocol can be vulnerable, need careful
implementation.

To defend against replay attacks,
» before encrypt m, randomly generate a string s.
» Send E(concatenate(m,s)).

Defense Against Replay Attacks

Even secure protocol can be vulnerable, need careful
implementation.

To defend against replay attacks,
» before encrypt m, randomly generate a string s.
» Send E(concatenate(m,s)).

» |f Amazon gets same message twice, reject.

Flipping RSA: Digital Signature

RSA can be used as in proof of identity.

» How does Alice know the receiver is Bob?

Flipping RSA: Digital Signature

RSA can be used as in proof of identity.

» How does Alice know the receiver is Bob?

» Bob could prove his identity by showing Alice d, but he
doesn’t want to do that.

Flipping RSA: Digital Signature

RSA can be used as in proof of identity.

» How does Alice know the receiver is Bob?

» Bob could prove his identity by showing Alice d, but he
doesn’t want to do that.

» Alice chooses a message m and asks Bob to send her m
mod N.

d

Flipping RSA: Digital Signature

RSA can be used as in proof of identity.

» How does Alice know the receiver is Bob?

» Bob could prove his identity by showing Alice d, but he

doesn’t want to do that.

» Alice chooses a message m and asks Bob to send her m¢

mod M.
» Alice can verify (m?)¢ = m (mod N).

E@("’» = D6m) =m

Digital Signature Attack

Should Bob sign arbitrary messages?

» Alice encrypts a top-secret message m and sends it to Bob.

Digital Signature Attack

Should Bob sign arbitrary messages?
» Alice encrypts a top-secret message m and sends it to Bob.
» Eve intercepts the cipher E(m).

Digital Signature Attack

Should Bob sign arbitrary messages?
» Alice encrypts a top-secret message m and sends it to Bob.
» Eve intercepts the cipher E(m).

» Eve chooses a number r and asks Bob to sign r¢E(m).

—

Digital Signature Attack

Should Bob sign arbitrary messages?
» Alice encrypts a top-secret message m and sends it to Bob.
» Eve intercepts the cipher E(m).
» Eve chooses a number r and asks Bob to sign r¢E(m).
» Bob agrees and sends Eve (r¢E(m))? mod N.

Digital Signature Attack

Should Bob sign arbitrary messages?
» Alice encrypts a top-secret message m and sends it to Bob.
» Eve intercepts the cipher E(m).
» Eve chooses a number r and asks Bob to sign r¢E(m).
» Bob agrees and sends Eve (r¢E(m))? mod N.
» Now Eve knows (réE(m))? = r**m® = rm (mod N).

m¢ ’ (rm)"’

Digital Signature Attack

Should Bob sign arbitrary messages?

» Alice encrypts a top-secret message m and sends it to Bob.
Eve intercepts the cipher E(m).
Eve chooses a number r and asks Bob to sign r¢E(m).
Bob agrees and sends Eve (r¢E(m))? mod N.

Now Eve knows (r¢E(m))? = r*m®® = rm (mod N).
1

vvyyyvyy

Eve knows r; so Eve computes r—* mod N to recover m.

THE END!

THANK'YOU

Thank you for coming]!

