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Continuous Probability

Recall that a random variable is a function X : ⌦ ! R.
When we write X = k , it actually means {! 2 ⌦ : X (!) = k}.

When you flip a coin, |⌦| = 2. For a Poisson R.V., |⌦| = |N|.

In the real world, we are often more interested in sample spaces

that are uncountably infinite in size.



Continuous Probability

Consider a gameshow with a wheel with circumference 2. If the

contestant spins the wheel, and it lands at the exact same point it

started at, the contestant wins a million dollars.

We can model this as X is some random variable taking on values

in [0, 2) ⇢ R. The probability of the contestant winning then

would correspond to P(X = 0).

If we assign P(X = 0) a positive probability, then there are

uncountably infinitely many other events X = k , k 2 [0, 2) that
have the same probability. Summing over all possible outcomes,

the total probability would end up being greater than 1.

Thus, in the continuous case, P(X = !) = 0 for all ! 2 ⌦.
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Probability Density Function (PDF)

A probability density function (pdf) for a real-valued random

variable X is a function f : R ! R satisfying:

I 8x 2 R, f (x) � 0

I R1
�1 f (x)dx = 1

and:

P(a  X  b) =

Z b

a
f (x)dx



Probability Density?

Consider a tiny interval (t, t + �).

P(t  X  t + �) =

Z t+�

t
f (x)dx

Since the interval is tiny, f is approximately constant on the

interval:

Z t+�

t
f (x)dx ⇡ f (t) · �

So,

P(t  X  t + �) ⇡ f (t) · � ! f (t) ⇡ P(t  X  t + �)

�
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Example: X ⇠ Unif (0, 2)

The pdf of X must be a constant c on [0, 2], since all values in the

interval are equally likely.

f (x) =

8
><

>:

0 8x 2 (�1, 0)

c 8x 2 [0, 2]

0 8x 2 (2,1)

We can find c by enforcing the constraint that the pdf integrates

to 1.

Z 1

�1
f (x)dx = 1

Z 2

0
cdx = 1

2c = 1

! c =
1

2
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Example: X ⇠ Unif (a, b)

f (x) =

8
><

>:

0 8x 2 (�1, a)
1

b�a 8x 2 [a, b]

0 8x 2 (b,1)



Analogs

The majority of definitions and techniques from the discrete case

transfer over to the continuous case by simply swapping

summations for integrals, and replacing the pmf with the pdf.

E[X ] =

Z 1

�1
xf (x)dx

Var[X ] = E[X 2
]� E[X ]

2

=

Z 1

�1
x2f (x)dx � (

Z 1

�1
xf (x)dx)2
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Cumulative Distribution Function (CDF)

The CDF is a bridge between the discrete and continuous cases.

The cumulative distribution function (cdf) of a random variable X
is the function F where:

F (x) = P(X  x)
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F (x) = P(X  x)

=

Z x

�1
f (s)ds =

8
><

>:

0 8x 2 (�1, 0)
1
2s
��x
0
=

1
2x � 0 =

x
2 8x 2 [0, 2]
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Cumulative Distribution Function (CDF)

The cdf has a few key properties:

I limx!�1 F (x) = 0

I limx!+1 F (x) = 1

I It is monotonically increasing

Furthermore, the CDF uniquely characterizes the distribution of

the random variable.

P(a  X  b) =
R b
a f (x)dx = F (b)� F (a)
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Recovering the PMF/PDF from the CDF

In the continuous case, take a derivative:

f (x) =
dF (x)

dx

In the discrete case, “discrete derivative”:

P(x) = F (x)� F (x � 1)

x � (x � 1)
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Conditioning on an Event

Consider a continuous random variable X , and an event A.
Let A be the set of values X (!) for all ! 2 A. So,
P(X 2 A) = P(A).

fX |A(x)� = P(x  X  x + �|X 2 A)

=
P(x  X  x + � \ X 2 A)

P(X 2 A)
=

(
fX (x)�
P(A) 8x 2 A
0 otherwise

) fX |A(x) =

(
fX (x)
P(A) 8x 2 A
0 otherwise
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Discrete vs Continuous Recap

Discrete Continuous

X X

PMF P(X=x) PDF fx(x)
CDF CDF

E[X] = ⌃xxP(X = x) E[X] =
R1
�1 xf (x)dx



Mixed Random Variables

Some random variables are neither continuous nor discrete, but

rather a combination of the two.



Mixed Random Example

You flip a fair coin. If it is heads, then you get a reward of 0.5
points. If it is tails, you spin a wheel to get a point value in [0, 1].
Let X be the mixed random variable representing the amount of

points you have at the end of this experiment.



Conditional Expectation

Let A be an event, and X be a continuous random variable. Then,

E[X |A] =
Z 1

�1
x · fX |A(x)

This also holds in the discrete case, just use the conditional pmf

instead of the conditional pdf.

Then we also have the conditional expectation version of the law

of total probability:

E[X ] = E[X |A] · P(A) + E[X |Ac
] · P(Ac

)



Conditional Expectation Example

Consider the mixed random variable X from before. What is E[X ]?

Let A be the event the coin lands on heads.

E[X ] = E[X |A] · P(A) + E[X |Ac
] · P(Ac

) (1)

= 0.5 · 0.5 + 0.5 · 0.5 (2)

= 0.5 (3)
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Two Envelope Paradox

There are two envelopes. One of them has x dollars, and the other

has 2x . You are given one of the envelopes. Should you switch to

the other envelope?

Argument 1: It doesn’t matter; by symmetry.

Argument 2: Let A be the amount in the envelope you are given,

and B be the amount in the other one.

E[B] = E[B |A < B] · P(A < B) + E[B |A > B] · P(A > B) (4)

= E[B |B = 2A] · 1
2
+ E[B |B =

A

2
] · 1

2
(5)

= E[2A] · 1
2
+ E[A

2
] · 1

2
(6)

=
5

4
E[A] (7)

so switch?
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