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Exponential Distribution: Fundamental Idea

The exponential distribution is the continuous analog of the
geometric distribution. In the case of the geometric coin flipping
experiment, we know that the first Heads occurs at a discrete
point in time.

In the real-world, we might be waiting for a system to crash, or for
a Piazza question to be answered. Here we have a continuous
point in time, as opposed to a discrete one. These scenarios are
naturally modeled by the exponential distribution.



Definition

For � > 0, a a continuous random variable X with pdf

f (x) =

(
�e��x , if x � 0

0, otherwise

is called an exponential random variable with rate parameter �,
and we write X ⇠ Exp(�)



Picture



Check

f (x) is nonnegative. Furthermore

Z 1

�1
f (x)dx =

Z 1

0
�e��xdx = �e��x |10 = 0� (�1) = 1

Thus, f (x) is a valid pdf.
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Mean and Variance of an Exponential

X ⇠ Exp(�)
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CDF of an Exponential

X ⇠ Exp(�)
If x < 0, the CDF is 0. Otherwise,

P(X  x) =

Z x

0
�e��sds = �e��s |x0 = �e��x � (�1) = 1� e��x

The complement of the CDF (CCDF) is

P(X > x) = 1� P(X  x) = 1� (1� e��x) = e��x
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Continuous Analog of Geometric

Let X ⇠ Exp(�), where X is the number of seconds we have to
wait.
Then P(X > x) = e��x . This is the probability we have to wait at
least x seconds.
We can consider a discrete time setting, in which we perform 1
trial every � seconds (then we can make � ! 0 to get a continuous
setting). Here we can say our success probability for a trial is
p = � ⇤ �. This makes sense since � can be interpreted as a rate of
success per unit time (� = p

� ). Let Y be the time (in seconds)
until the first success.

P(Y > k�) = (1� p)k = (1� ��)k

If we switch to time instead of trials via t = k�, we get:

P(Y > t) = P(Y > (
t

�
)�) = (1� ��)

t
� ⇡ e��t

as � ! 0.
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Memoryless Property

Just like the geometric distribution, the Exponential distribution
exhibits the memoryless property. Let X ⇠ Exp(�), then
P(X > x + t|X > t) = P(X > x).
Proof:

P(X > x + t|X > t) =
P(X > x + t \ X > t)

P(X > t)

=
P(X > x + t)

P(X > t)
=

e��(x+t)

e��t

= e��x = P(X > x)
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Normal Distribution: Fundamental Idea

The normal (or Gaussian) distribution is perhaps the most famous
continuous probability distribution. It is often used as the go-to
distribution to represent the distribution of unknown random
variables. Later in this course we will discuss the justification
behind doing so.

In the real-world, we might be trying to model measurement error,
or the distribution of scores for an exam. These scenarios are
naturally modeled by the normal distribution.



Definition

For any µ 2 R and � > 0, a continuous random variable X with
pdf

f (x) =
1p
2⇡�2

e�
(x�µ)2

2�2

is called a normal random variable with mean parameter µ and
variance �2, and we write N (µ,�2)

In the special case where µ = 0 and � = 1, X is a standard normal
random variabe. The CDF of the standard normal has a special
name, P(X < x) = �(x).



Picture



Check

f (x) is nonnegative.
However,

Z 1

�1
f (x)dx =

Z 1

�1

1p
2⇡�2

e�
(x�µ)2

2�2 dx = 1

is true but tricky to verify (need to use polar coordinates).
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Mean and Variance of Standard Normal

E[X ] =

Z 1

�1
xf (x)dx =
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x
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e�
x2
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Scaling and Shifting Normals

If X ⇠ N (µ,�2), then Y = X�µ
� ⇠ N (0, 1).

Proof: Let X ⇠ N (µ,�2), we can calculate the distribution of
Y = X�µ

�

P(a  Y  b) = P(�a+ µ  X  �b + µ) (4)

=
1p
2⇡�2

Z �b+µ

�a+µ
e�

(x�µ)2

2�2 dx (5)

=
1p
2⇡

Z b

a
e�

y2

2 dy (6)
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Mean and Variance of Normal

Let X ⇠ N (µ,�2), we know then that the distribution of
Y = X�µ

� is N (0, 1).
So,

0 = E[Y ] = E[X � µ

�
] =

E[X � µ]

�
(7)

) 0 = E[X ]� µ (8)

) E[X ] = µ (9)

For variance,

1 = Var[Y ] = Var[
X � µ

�
] =

Var[X � µ]

�2
(10)

) 1 =
Var[X ]

�2
(11)

) Var[X ] = �2 (12)
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What does this mean?

We can relate any normal random variable X ⇠ N (µ,�2) to the
standard normal Y :

P(X  a) = P(Y  a� µ

�
) = �(

a� µ

�
)

Since the CDF uniquely characterizes a distribution, we use a table
of precomputed values of �(x) to do computation with normal
distributions.



Using Table of Precomputed Values

If X ⇠ N (60, 202), and we want to find P(X � 80).

P(X � 80) = 1� P(X  80)

.
We can let Y = X�µ

� = X�60
20 , so Y ⇠ N (0, 1). Then,

P(X  80) = P(
X � 60

20
 80� 60

20
)

= P(Y  1)

= �(1)

= 0.8413... (using table)

) P(X � 80) = 1� 0.8413...
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Standard Normal CDF Table



Nice Property: Sum of Indep. Gaussians is Gaussian

If X ⇠ N (µx ,�2
x) and Y ⇠ N (µy ,�2

y ), then Z = X + Y has
distribution Z ⇠ N (µx + µy ,�2

x + �2
y )

Proof: See notes/HW.



Two Envelopes Revisited

Just like last time, one envelope contains x and the other contains
2x , except this time you can look inside the envelope you are given
and see how much money is inside before deciding to switch. Is
there some strategy that can give you a better than 50% chance of
getting the envelope with more money?



Two Envelopes Revisited




