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Exponential Distribution: Fundamental ldea

The exponential distribution is the continuous analog of the
geometric distribution. In the case of the geometric coin flipping
experiment, we know that the first Heads occurs at a discrete
point in time.

In the real-world, we might be waiting for a system to crash, or for
a Piazza question to be answered. Here we have a continuous
point in time, as opposed to a discrete one. These scenarios are
naturally modeled by the exponential distribution.
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Check

f(x) is nonnegative. Furthermore

/ f(x)dx = / de Mdx = —eM[FP=0-(-1)=1
0

— o0

Thus, f(x) is a valid pdf.



Mean and Variance of an Exponential
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Mean and Variance of an Exponential

X ~ Exp())
> — X 1
E[X] = xde Ydx = =
0 A
E[X?] = / Y e Max — 2
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Var(X) = E[X?] — E[X]* = 2O 2



CDF of an Exponential
X~ Ex?(>)
\f x <D, ®P(Xex)=D

OWeywice, _Ns x _Nx
ORIk B SV \'o - < '(4)
? iy PV
Al C,LQ? \ -
/\\/\L /\L/M\: % C’DP s\~ (\’(X‘-x) A

R %)= |- Plxew) =\~ (g
rop

- —

Nety: Tre CCOF abo
— ’h‘ J‘.Sw;uh‘on‘

: denhifk
o'l SO anigpel4 denliktes




CDF of an Exponential

X ~ Exp())
If x < 0, the CDF is 0. Otherwise,

X =) = / Ae Mds = —e Mg =—e M- (-1)=1—e™
0

The complement of the CDF (CCDF) is

P(X>X):1_P(X§X):1_(1—e_>\x):e_>‘x



Continuous Analog of Geometric
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Continuous Analog of Geometric

Let X ~ Exp(\), where X is the number of seconds we have to
wait.

Then P(X > x) = e~**. This is the probability we have to wait at
least x seconds.

We can consider a discrete time setting, in which we perform 1
trial every § seconds (then we can make § — 0 to get a continuous
setting). Here we can say our success probability for a trial is

p = A *xd. This makes sense since A can be interpreted as a rate of
success per unit time (A = £). Let Y be the time (in seconds)
until the first success.

P(Y > ké) = (1 — p)k = (1 — X)*

If we switch to time instead of trials via t = kd, we get:
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P(Y > t)= P(Y > (%)5) — (1- )

as 6 — 0.
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Memoryless Property

Just like the geometric distribution, the Exponential distribution
exhibits the memoryless property. Let X ~ Exp()\), then

P(X > x+t|X > t) = P(X > x).

Proof:

P(X>x+tNnX>t)

P(X >x+tX>t)=

P(X > t)
CP(X>x+1t) e M)
- P(X>t) e A

=e M= P(X >x)



Normal Distribution: Fundamental ldea

The normal (or Gaussian) distribution is perhaps the most famous
continuous probability distribution. It is often used as the go-to
distribution to represent the distribution of unknown random
variables. Later in this course we will discuss the justification

behind doing so. T

In the real-world, we might be trying to model measurement error,
or the distribution of scores for an exam. These scenarios are
naturally modeled by the normal distribution.
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For any 4 € R and o > 0, a continuous random variable X with

pdf D
Fx) = e 5 e =
VoS N

is called a normal random varlg“Ble with mean parameter 1 and
variance 02, and we write N (u, 0?)

In the special case where y=0and o0 =1, X is a Etandard .normal

random variabe. The CDF of thg standard normal has a special
name, P(X < x) = ®(x). e
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Normal distribution
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The red curve is the standard normal distribution

Cumulative distribution function

Cumulative distribution function for the normal distribution
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Check

f(x) is nonnegative.

However,
o0 o0 1 _x=p)?
/ f(x)dX:/ e 202 dx =1
—00 —00 27'('0-2

is true but tricky to verify (need to use polar coordinates).




Mean and Variance of Standard Normal
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Mean and Variance of Standard Normal

= o 1
E(X] = xf(x)dx = Xx——e 2dx =0
X] /_OO (x) /_Oo —

Var[X] = E[X?] — E[X]? = E[X?]

>0 > 1 x2
2 2 _xZ
= x“f(x)dx = X e 2dx=1
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Scaling and Shifting Normals
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Scaling and Shifting Normals

If X ~ N (p1,02), then Y = ZX2£ ~ N(0,1).
Proof: Let X ~ N(u,0?), we can calculate the distribution of
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Let X ~ N (u,0?
Y = 21 s N(0,1).
So,

0 =E[Y] =

For variance,

1 = Var[Y] =

Mean and Variance of Normal

), we know then that the distribution of
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What does this mean?

We can relate any normal random varlableh/\/ (u, o }o the
standard normal Y: ,,,\oww\’ t'k brom-y s
ard &\M}#“Vf) Vol

P(X <a)=P(Yy < 228y = =4

0 o

Since the CDF uniquely characterizes a distribution, we use a table
- I/ o
of precomputed values of ®(x) to do computation with normal

distributions. Acole
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Using Table of Precomputed Values

If (X ~ N(60,202), )and we want to find

(X 20 - |- Plxe )
L Y52 _X=0 5 Y~ NOD

20

/go 30 - G0
Tren (‘VO(‘50> /\7( >
= \?(\/ 6
- fL\)
= 0 \5..
S X280 = | -0 .43 .



Using Table of Precomputed Values

If X ~ N(60,202), and we want to find P(X > 80).

P(X >80)=1— P(X < 80)

We can let Y = X;“ = X2_O6O, soY NN(O, 1). Then,

X —60 _ 80— 60
P(X < 80) = P(“55— < —5—)

=P(Y <1)

= (1)

= 0.8413... (using table)
= P(X >80) =1 0.8413...



Standard Normal CDF Table

Introduction to Probability, 2nd Ed, by D. Bertsekas and J. Tsitsiklis, Athena Scientific, 2008

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 || .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 || .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 || .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
03 || .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 || 6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 || .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 || .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 || .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 7823 .7852
0.8 || .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 || .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
.1_.0. .8413 §.8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 43 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 | .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
13 || .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 || .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 || 19332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 || .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 || .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 || .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 || .9713 9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 || 9772 9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 || .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 || .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 || .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 || 9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 || .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 || .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 || 9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 || .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 || .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 || .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 || .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 || .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 || 9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 || .9997 .9997 .9997 .9997 9997 .9997 .9997 .9997 .9997 .99&

The standard normal table. The entries in this table provide the numerical values
of &(y) = P(Y < y), where Y is a standard normal random variable, for y between 0
and 3.49. For example, to find $(1.71), we look at the row corresponding to 1.7 and
the column corresponding to 0.01. so that ®(1.71) = .9564. When y is negative. the

value of ®(y) can be found using the formula ®(y) = 1 — &(—y).



Nice Property: Sum of Indep. Gaussians is Gaussian
(NMW\>

If X ~ N(px,0%) and Y ~ N(py,07), then Z =X 4 Y has
distribution Z ~ N (ux + py, 02 + 0)2,)

Proof: See notes/HW.



Two Envelopes Reuvisited

rxe@/ X >0

Just like last time, one envelope contains x and the other contains
2X except this time you can look inside the envelope you are given
and see how much money is inside before deciding to switch. Is
there some strategy that can give you a better than 50% chance of
gettmg the envelope with more money?

—




Two Envelopes Revisited ‘%9‘
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