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Markov’s Inequality: Fundamental Idea

Simple bound on the tail of a random variable, that uses only the
expected value (first moment), and the fact that the random
variable is nonnnegative.



Markov’s Inequality: Definition

If X is a nonnegative random variable with finite mean and a > 0,
then the probability that X is at least a is at most the expectation
of X divided by a.

P(X � a)  E[X ]

a



Markov’s Inequality: Proof I
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Thus, P(X � a)  E[X ]
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Markov’s Inequality: Proof II

Let I be the indicator r.v. defined as follows:

I =

(
1, if X � a

0, o.w.
(8)

Then,

X � a · I (9)

E[X ] � E[a · I ] (10)

E[X ] � aE[I ] (11)

E[X ] � aP(X � a) (12)

Thus, P(X � a)  E[X ]
a
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Markov’s Inequality: Proof III

E[X ] = E[X |X < a] · P(X < a) + E[X |X � a] · P(X � a) (13)

� E[X |X � a] · P(X � a) (14)

� a · P(X � a) (15)

Thus, P(X � a)  E[X ]
a
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Example: Markov & Coin Flips

Let X ⇠ Geom(12). Use Markov’s inequality to upper bound
P(X > 10).

P(X > 10)  E[X ]

10
=

2

10
=

1

5
(16)

If we try to actually calculate P(X > 10):

P(X > 10) = (1� p)10 = (
1

2
)10 (17)

Note that
1

210
<<

1

5
, so Markov’s bound can be pretty loose.
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Generalized Markov’s Inequality: Definition

If X is any random variable with finite mean and a > 0, then for
any r > 0:

P(|X | � a)  E[|X |r ]
ar

Proof: Try it yourself, then see notes.



Chebyshev’s Inequality: Fundamental Idea

Often times we can do better than Markov’s Inequality if we use
more information about the random variable. For this inequality,
we use the first two moments, E [X ] and E [X 2].

Note: The variance of a random variable captures these two
moments, and is related to how much probability there is in the
tails.



Chebyshev’s Inequality: Definition

If X is a random variable with finite mean µ and a > 0, then the
probability that X is at least c away from its mean is at most the
variance of X divided by c2.

P(|X � µ| � c)  Var[X ]

c2

Note: X does not need to be nonnegative in order to apply
Chebyshev’s inequality. c is a positive constant.



Chebyshev’s Inequality: Proof

Define Y = (X � µ)2 and note that
E[Y ] = E[(X � µ)2] = Var[X ]. Also, notice that the event that we
are interested in, |X � µ| � c , is exactly the same as the event
Y = (X � µ)2 � c2. Therefore, Pr[|X � µ| � c] = Pr[Y � c2].

Moreover, Y is always nonnegative, so we can apply Markov’s
inequality to get

Pr[|X � µ| � c] = Pr[Y � c2]  E[Y ]

c2
=

Var[X ]

c2
.
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Example: Chebyshev & Coin Flips

Let X ⇠ Geom(12). Use Chebyshev’s inequality to upper bound
P(X > 10).

E[X ] = µ = 2 (18)

Var[X ] = 2 (19)

P(X > 10) = P(X > µ+ 8) = P(X � µ > 8) (20)

P(X > 10)  P(|X � µ| > 8) (21)

 Var[X ]

82
=

2

64
=

1

32
(22)

This is a tighter bound than Markov’s (15), but is still far o↵ from

the true probability
1

210
.
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Chebyshev Corollary

For any random variable X with finite expectation E[X ] = µ and
finite standard deviation � =

p
Var[X ],

Pr[ |X � µ| � k�]  1

k2
,

for any constant k > 0.

Proof:
Plug = k� into Chebyshev’s inequality.



Chebyshev Corollary: Example

Let X ⇠ N (µ,�2). Find a bound on the probability that X is 2�
or more away from its mean µ.

Pr[ |X � µ| � 2�]  1

22
=

1

4

Note: Our empirical 68–95–99.7 rule for normal distributions
indicates that this can be quite a crude bound. This empirical rule
says 95% of the time X will fall within two standard deviations,
meaning it will fall 2� away from its mean µ with probability 5%.
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Law of Large Numbers: Fundamental Idea

If we observe a random variable many times, and average our
observations, then the average will converge to the average of the
random variable.



Law of Large Numbers: Definition

Let X1,X2, . . . , be a sequence of i.i.d. random variables with
common finite expectation E[Xi ] = µ and variance Var[Xi ] = �2

for all i . Then, their partial sums Sn = X1 + X2 + · · ·+ Xn satisfy

Pr
⇥
| 1nSn � µ| < ✏

⇤
! 1 as n ! 1,

for every ✏ > 0, however small.



Law of Large Numbers: Proof

Let Var[Xi ] = �2 < 1 be the common variance of the r.v.’s. Since
X1,X2, . . . are i.i.d. random variables with E[Xi ] = µ and

Var[Xi ] = �2, we have E[ 1nSn] = µ and Var[ 1nSn] =
�2

n , so by
Chebyshev’s inequality we have

Pr
⇥
| 1nSn � µ| � ✏

⇤


Var[ 1nSn]

✏2
=

�2

n✏2
! 0 as n ! 1.

Hence, Pr
⇥
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⇤
= 1� Pr
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Example: Law of Large Numbers

Consider a series of coin flips, where each coin flip is independent
of the others and has distribution Bernoulli(1/2), where 1
corresponds to heads and 0 corresponds to tails.

The Law of Large Numbers states that the proportion of heads is
likely to be near 1/2, the true mean, for a large number of flips.
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