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Markov's Inequality: Fundamental Idea
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Simple bound on the tail of a random variable, that uses only the

expected value (first moment), and the fact that the random

variable Is nonnnegative.
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Markov's Inequality: Definition

If X is a nonnegative random variable with finite mean and a > 0,
then the probability that X is at least a is at most the expectation
of X divided by a.
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Markov's Inequality: Proof |

E[X] = /_ Z xF(x)dx = /0 " xF(x)dx
_ /0 " $F(x)dx + / " F(x)dx
> / " F(x)dx
> / " af(x)dx

= a-/oo f(x)dx
= aP(X > a)

Thus, P(X > a) < ZXI
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Markov's Inequality: Proof Il

Let / be the indicator r.v. defined as follows:

Then,

Thus, P(X > a) <

E[X]
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Markov's Inequality: Proof Ill A
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Markov's Inequality: Proof Il

E[X] =E[X|X <a]- P(X <a)+E[X|X >a]- P(X >a) (13)
> E[X|X > a]- P(X > a)
>a-P(X > a) (15)
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Thus, P(X > a) < EXI
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Example: Markov & Coin Flips

Let X ~ Geom(%). Use Markov's inequality to upper bound

P(X > 10). FC3 2
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Example: Markov & Coin Flips

Let X ~ Geom(3). Use Markov's inequality to upper bound
P(X > 10).

If we try to actually calculate P(X > 10):

P(X > 10) = (1 - p)!® = (5)®

1 y 3
Note that 510 <<‘i, so Markov's bound can be pretty loose.
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Generalized Markov's Inequality: Definition

If X is any random variable with finite mean and a > 0, then for

any r > 0:
- _ E[X]]

P(X| 2 a) < =2

Proof: Try it yourself, then see notes.




Chebyshev's Inequality: Fundamental ldea

Often times we can do better than Markov's Inequality if we use
more information about the random variable. For this inequality,
we use the first two moments, E[X] and E[X?].
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Note: The variance of a random variable captures these two
moments, and is related to how much probability there is in the

tails. \!a’(x)‘: ECXZ'S“ &&(]L



Chebyshev's Inequality: Definition

If X is a random variable with finite mean i and g¢> 0, then the
probability that X is at least ¢ away from its mean is at most the
variance of X divided by c?.
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Note: X does not need to be nonnegative in order to apply )
Chebyshev's inequality. ¢ is a positive constant.



Chebyshev's Inequality: Proof 'ﬁ&’& =
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Chebyshev's Inequality: Proof

Define Y = (X — 1)? and note that

E[Y] = IE[()?— 11)?] = Var[X]. Also, notice that the event that we
are interested in, | X — u| > ¢, is exactly the same as the event

Y = (X — pu)? > c?. Therefore, Pr[|X — u| > c] = Pr[Y > ?].
Moreover, Y is always nonnegative, so we can apply Markov's
Inequality to get

E[Y] Var[X]
c2 2

Pr|X — p| > c] =Pr[Y > %] <



Example: Chebyshev & Coin Flips
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Let X ~ Geom(%). Use Chebyshev's inequality to upper bound
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Example: Chebyshev & Coin Flips

Let X ~ Geom(%). Use Chebyshev's inequality to upper bound
P(X > 10).

E[X]=pu=2

—

Var[X] = 2 )
—_— 2 \
P(X >10)=P(X > u+8)=P(X —u>8)

P(X >10) < P(X — | > 8) = [lb< -4l 24
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Chebyshev Corollary

For any random variable X with finite expectation E[X] = y and
finite standard deviation o = /Var[X],

1
Pr[|X — p| > kJ] < k2’
— N
for any constant k > 0. \‘WLX> \
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Chebyshev Corollary: Example

Let X ~ N(u,0?). Find a bound on the probability that X is 2g
or more away from its mean pu.
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Chebyshev Corollary: Example

Let X ~ AN (p,02). Find a bound on the probability that X is 2o
or more away from its mean pu.

1 1
PriIX —ul220] < 55 =7

Note: Our empirical 68-95—99.7 rule for normal distributions
indicates that this can be quite a crude bound. This empirical rule
says 95% of the time X will fall within two standard deviations,
meaning it will fall 20 away from its mean p with probability 5%.



Law of Large Numbers: Fundamental ldea
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If we observe a random variable many times, and average our
observations, then the average will converge to the average of the
random variable.



Law of Large Numbers: Definition

Let X1, X5,..., be a sequence of i.i.d. random variables with
common finite expectation E[X;] = p and variance Var[X; = g2

for all i. Then, their partial sums S5, = X; + X5 4 -.- + X, sathfy

Pr|iS, —ul <e] —1 as n — 0o,
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for every € > 0, however small.
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Law of Large Numbers: Proof &29

2
Vwé“s* N

P\ ’S""A\>z> T ne*

v
L S, e @ PRI PR TP PA T s bo D as
A — n=> 20
L < \= M-
el\,ﬂs“ N ZEE%UAS ~ 'r\)’ ,(\0;2_’, b'z

— _ \,s,(}n\a*i)
= P 1*5 ‘f““£> i L (i(\
/ n = &



Law of Large Numbers: Proof

Let Var[X;] = 02 < oo be the common variance of the r.v.’s. Since
X1, Xo, ... are i.i.d. random variables with E[X;] = u and

Var[X;] = 02, we have E[1S,] = 11 and Var[25,] = "—nz so by
Chebyshev's inequality we have

Var[+S,] _ o?

PrilsSn—ul =€l < 2

— 0 as n — oo.
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Hence, Pr[|1S, —pu| <€ =1—Pr[|1S,—ul >¢€] - 1 as
n — oo.



Example: Law of Large Numbers r_
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Consider a series of coin flips, where each coin flip is independent

of the others and has distribution Bernoulli(1/2), where 1
corresponds to heads and 0 corresponds to tails.



Example: Law of Large Numbers

Consider a series of coin flips, where each coin flip is independent
of the others and has distribution Bernoulli(1/2), where 1
corresponds to heads and 0 corresponds to tails.

The Law of Large Numbers states that the proportion of heads is
likely to be near 1/2, the true mean, for a large number of flips.
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