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Markov Chains: Fundamental ldea

We now wish to model sequences of random variables
Xo, X1, X5, .... You can think of X, as the state of a system at time
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We will be working on the setting where time_is discrete, and each
X; can only take on a finite set of values. This finite set of values

is denoted X’ and is called the state space.
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Markov Property

Think of&(_,l be the present/current state, and X1 as the future
state. The Markov Property is:

Pr(\Xn+1 :J‘X” = i, ...,Xo = I'o) = PI’(Xn_|_1 :j|Xn = i)
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This property is not saying the future is independent of the ‘pa)st.
This property is saying that the past and future are conditionally
independent given the present. N:N ~ > misinn
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We call Pr(_X,,+1 :jP(,, = i) =(P(i, ) the transition probability
from state / to state j.
In this class, we will only deal with{time homogeneous/Markov

chains.




Transition Probability Matrix

Let the state space X' be {1,..., k}. The transition probability

matrix for a Markov chain P is a k by k matrix such that the entry

in the ith row and j column is P(i,j), and:
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Distribution Over States
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We use 7; to represent the distrution of our random variable X;
over the states in X'. The entries in mj_must be probabilities that
sum up to 1.

o Is called our initial distribution. o, in conjunction with P and
X fully specifies our Markov chain.
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Moving in Time

Suppose at time n, X,, has distribution 7,. Then, by the Law of
Total Probability, — .
?" (X"_“ =) A Xﬂ '°>

Pr(Xny1=J) = Z I?r(XrH—l = j|Xn = ’.2 F‘)r(Xn = i)‘ (3)
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But > . P(i,j)mn(i) is the jth entry of m,P. So, T, = T P
Tnt1l = TnP (5)

T2 = Tpt1 P = m, PP = 7"_n'DQ (6)
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_E_k is the probability transition matrix where the entry in the ith

row jth column is the probability of going from state / to state j in
k steps.



Hitting Time Example
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Probability of A before B Example
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Invariant Distribution Definition
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A distribution 7 is invariant for the transition probability matrix P
if it satisfies the following balance equations:

T =mnP (7)



Stationary Distribution Existence S\ T
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Let P be the probability transition matrix for a Markov chain.

The rows of P_add up to 1. Let 1 be a column vector of ones.
This meansﬂ =1 :hl 1.

This means P has a right eigenvector corresponding to eigenvalue

1. Since the right and left eigenvalues of a square matrix are the

same, this means there exists some left eigenvector 7 such that
—— — )

P =1-m.

—

Note that this does not say anything about the uniqueness of the
stationary distribution.
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Stationary Distribution Example
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