CS 70 Discrete Mathematics and Probability Theory Summer 2020 Course Notes DIS 3A

1 Modular Practice

Solve the following modular arithmetic equations for *x* and *y*.

(a) $9x + 5 \equiv 7 \pmod{11}$.

(b) Show that $3x + 15 \equiv 4 \pmod{21}$ does not have a solution.

(c) The system of simultaneous equations $3x + 2y \equiv 0 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$.

(d) $13^{2019} \equiv x \pmod{12}$.

(e) $7^{21} \equiv x \pmod{11}$.

2 When/Why can we use CRT?

Let $a_1, \ldots, a_n, m_1, \ldots, m_n \in \mathbb{Z}$ where $m_i > 1$ and pairwise relatively prime. In lecture, you've constructed a solution to

```
x \equiv a_1 \pmod{m_1}
:
x \equiv a_n \pmod{m_n}.
```

Let $m = m_1 \cdot m_2 \cdots m_n$.

1. Show the solution is unique modulo *m*. (Recall that a solution is unique modulo *m* means given two solutions $x, x' \in \mathbb{Z}$, we must have $x \equiv x' \pmod{m}$.)

2. Suppose m_i 's are not pairwise relatively prime. Is it guaranteed that a solution exists? Prove or give a counterexample.

3. Suppose m_i 's are not pairwise relatively prime and a solution exists. Is it guaranteed that the solution is unique modulo m? Prove or give a counterexample.

3 Mechanical Chinese Remainder Theorem (practice)

Solve for $x \in \mathbb{Z}$ where:

- $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{5}$ $x \equiv 4 \pmod{7}$
- (a) Find the multiplicative inverse of 5×7 modulo 3.
- (b) What is the smallest $a \in \mathbb{Z}^+$ such that $5 \mid a, 7 \mid a, and a \equiv 2 \pmod{3}$?
- (c) Find the multiplicative inverse of 3×7 modulo 5.
- (d) What is the smallest $b \in \mathbb{Z}^+$ such that $3 \mid b, 7 \mid b$, and $b \equiv 3 \pmod{5}$?
- (e) Find the multiplicative inverse of 3×5 modulo 7.
- (f) What is the smallest $c \in \mathbb{Z}^+$ such that $3 \mid c, 5 \mid c$, and $c \equiv 4 \pmod{7}$?
- (g) Write down the set of solutions for the system of equations.