CS 70 Discrete Mathematics and Probability Theory Summer 2020 Course Notes DIS 6D

1 Continuous Joint Densities

The joint probability density function of two random variables *X* and *Y* is given by f(x,y) = Cxy for $0 \le x \le 1, 0 \le y \le 2$, and 0 otherwise (for a constant *C*).

(a) Find the constant C that ensures that f(x, y) is indeed a probability density function.

- (b) Find $f_X(x)$, the marginal distribution of *X*.
- (c) Find the conditional distribution of *Y* given X = x.
- (d) Are X and Y independent?

2 Uniform Distribution

You have two spinning wheels, each having a circumference of 10 cm with values in the range [0,10) marked on the circumference. If you spin both (independently) and let *X* be the position of the first spinning wheel's mark and *Y* be the position of the second spinning wheel's mark, what is the probability that $X \ge 5$, given that $Y \ge X$?

3 Exponential Practice

Let $X \sim \text{Exponential}(\lambda_X)$ and $Y \sim \text{Exponential}(\lambda_Y)$ be independent, where $\lambda_X, \lambda_Y > 0$. Let $U = \min\{X, Y\}$, $V = \max\{X, Y\}$, and W = V - U.

- (a) Compute $\mathbb{P}(U > t, X \leq Y)$, for $t \geq 0$.
- (b) Use the previous part to compute $\mathbb{P}(X \leq Y)$. Conclude that the events $\{U > t\}$ and $\{X \leq Y\}$ are independent.
- (c) Compute $\mathbb{P}(W > t \mid X \leq Y)$.
- (d) Use the previous part to compute $\mathbb{P}(W > t)$.
- (e) Calculate $\mathbb{P}(U > u, W > w)$, for w > u > 0. Conclude that *U* and *W* are independent. [*Hint*: Think about the approach you used for the previous parts.]