CS $70 \quad$ Discrete Mathematics and Probability Theory
 Fall 2011 Rao

1 True/False. [24 pts]

Circle one of the provided answers please!
No negative points will be assigned for incorrect answers.
(a) True or False: Given independent events A, B where A and B have nonzero probability, then $A \cap B$ is nonempty.
(b) True or False: If A, B, and C are mutually independent, then $\operatorname{Pr}[A \mid B, C]=\operatorname{Pr}[A]$.
(c) True or False: If $\operatorname{Pr}[A \mid B]=2 \operatorname{Pr}[A]$, then $\operatorname{Pr}[B]>\operatorname{Pr}[A]$.
(d) TruE or FALSE: It is necessarily true that the variance of a random variable X is $\leq(E(X))^{2}$.
(e) True or False: It is necessarily true that the variance of a random variable X is $\leq E\left(X^{2}\right)$.
(f) True or False: For disjoint events A and B, the $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \times \operatorname{Pr}[B]$.
(g) True or False: For independent events, $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]$.
(h) True or False: For a Poisson random variable X with parameter λ, the $\operatorname{Pr}[X=i+1] \leq \operatorname{Pr}[X=i]$ for all $i \geq \lambda$.
(i) TruE or FALSE: For a Poisson random variable X with parameter $\lambda=1$, then Chebyshev's inequality ensures that the $\operatorname{Pr}[X \geq 11] \leq \frac{1}{100}$.
(j) TruE or FALSE: For a binomially distributed variable X with parameter $p=\frac{1}{2}$ and $n=100$, Chebyshev's inequality ensures that the $\operatorname{Pr}[X \geq 75] \leq \frac{1}{10}$.
(k) True or False: Given two random variables, X with Poisson distribution and Y with a geometric distribution, both with mean μ, we can conclude that $E[X+Y]>E[2 X]$.
(l) TRUE or FALSE: The maximum variance binomial distribution with parameter n has parameter $p=1$.
(m) True or FALSE: Given a random variable $S=X_{1}+\ldots+X_{n}$ where the X_{i} 's are chosen independently from the same distribution, and any $\alpha, \operatorname{Pr}[|S-E[S]| \geq \alpha]$ goes to 0 as n goes to infinity.

2 Short answer. [43 pts]

For parts a to b, consider a deck with just the four aces (red: hearts, diamonds; black: spades, clubs). Melissa shuffles the deck and draws the top two cards.
(a) [4 pts] Given that Melissa has the ace of hearts, what is the probability that Melissa has both red cards?
(b) [4 pts] Given that Melissa has at least one red card, what is the probability that she has both red cards?
(c) $[4$ pts $]$ Suppose that A and B are independent, C is disjoint from both A and B and $P[A]=P[B]=P[C]=$ $1 / 4$. Compute $P[A \cup B \cup C]$.

For parts d to h, we consider two events A and B such that $P(A)=0.3$ and $P(B)=0.4$. Compute $P(A \mid B)$ in each of the following cases:
(d) $[3 \mathrm{pts}] \mathrm{A}$ and B are independent
(e) $[3 \mathrm{pts}] \mathrm{A}$ and B are disjoint
(f) $[3$ pts $] \Longrightarrow B$
(g) $P[A \cap B]=0.1$
(h) $[3 \mathrm{pts}] P(A \cup B)=0.5$
(i) [4 pts$]$ The number of accidents (per month) at a certain factory has a Poisson distribution. If the probability that there is at least one accident is $1 / 2$, what is the probability that there are exactly two accidents?
(j) [4 pts] A pair of dice is rolled until either a 4 is rolled (the numbers on the two dice add up to 4) or a 7 is rolled. What is the expected number of rolls needed?
(k) [4 pts$]$ There is a test to determine whether one has boneitis, but the test is not always accurate. For those who do have boneitis, the test has an 4 in 5 chance of coming out positive. For those who don't have boneitis, the test has a 1 in 9 chance of coming out positive. Overall, about 10% of people have boneitis.

Suppose the test comes out positive for That Guy. What is the probability That Guy has boneitis?
(1) [4 pts] A hand of 13 cards are chosen (without replacement) at random from a standard deck of 52 poker cards. What is the expected number of four-of-a-kinds that we see from these 13 cards? (No need to evaluate the expression to get a number.)
(Four-of-a-kind is four cards of the same rank. For example, the hand

contains three four-of-a-kinds, namely the aces, the kings and the twos.)

3 3-SAT. [15 pts]

A 3-conjuctive normal form (CNF) formula is a boolean formula consisting of the "and" of a sequence of clauses where each clause consists of the "or" of three literals. For example, $\phi=\left(x_{1} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(x_{5} \vee \overline{x_{2}} \vee \overline{x_{1}}\right)$. (No variable can appear twice in a single clause.)

One wishes to find an assignment to the variables to maximize the number of true clauses. The literals work in the natural manner: $x_{1}=T$ if and only if $\overline{x_{1}}=F$. In the example above, the assignment, $x_{1}=T, x_{2}=T$ and $x_{5}=F$ satisfies one clause in ϕ, where $x_{1}=T, x_{2}=F, x_{5}=F$ satisfies two clauses in ϕ.
(a) For a particular formula with n clauses, consider choosing a random assignment to the variables, i.e., $x_{i}=T$ or $x_{i}=F$ with equal probability. What is the expected number of satisfied clauses?
(b) Let U be a random variable corresponding to the number of unsatisfied clauses. What is $E(U)$?
(c) Upper bound the probability that U is larger than $(1+\varepsilon) E(U)$ for $\varepsilon \geq 0$ as a function of ε. (You should give a nontrivial bound here.)
(d) Consider repeating this experiment until one finds an assignment that leaves at most $(1+\varepsilon) E(U)$ unsatisfied clauses. Give an upper bound on the expected number of repetitions.

4 The evolution of a social network. [18 pts]

(We give a simplified analysis of the connectivity of a social network.)
Say one person in a class of n people knows a secret, perhaps where the midterm is. Occasionally a randomly chosen person A who doesn't know the secret calls a randomly chosen person $B(B \neq A)$ and learns the secret if B knows it.

Let X_{2} be a random variable that represents the number of calls (no two calls are simultaneous) until two people know the secret.
(a) What is the distribution of X_{2} ?
(b) What is $E\left[X_{2}\right]$?
(c) Let X_{i} be the number of calls needed to go from $i-1$ people knowing the secret to i people. What is $E\left[X_{i}\right]$?
(d) What is the expected time for everyone to know the secret?
(e) Bound your expression to within a constant factor for large n. Your expression should not have a summation. (You may use $\Theta(\cdot)$ notation, recall that $2 n^{2}-5 n+2=\Theta\left(n^{2}\right)$.)

