
CS–70 Discrete Mathematics for Computer Science, Spring 2012

Midterm 2 Solutions

Note: These solutions are not necessarily model answers. They are designed to be tutorial in nature, and
sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may be
more than one correct solution. The maximum number of points is 70. Comments in italics following the
solutions highlight some common errors or give explanations.

1. True-False/Multiple Choice [26 points]

(a) [True or false?] 1 point for each correct answer; −1 point for each incorrect answer; 0 points for no 15pts
answer

• In an undirected graph, the sum of the degrees of the vertices is equal to the number of edges in
the graph: False. [The sum of the degrees is equal to twice the number of edges.]

• In a directed graph, the sum of the in-degrees of the vertices is equal to the sum of the out-degrees:
True.

• The number of edges in an n-dimensional hypercube is n2n−1: True. [The hypercube has 2n

vertices and each of them has degree n, so the number of edges is 1
2 × 2n × n = n2n−1.]

• The length of a de Bruijn sequence is always a power of two: True.

• The following is a de Bruijn sequence for n = 3: 10010110: False. [For example, the 3-bit string
101 appears twice as a subsequence, and the string 111 doesn’t appear at all.]

• In any probability space, there is an event E such that E and A are independent for all events A:
True. [We can take E to be either the entire probability space Ω, or the empty set.]

• If the events A,B are independent, and the events B,C are independent, then the events A,C
must be independent: False.

• For any events A and B such that Pr[B] > 0, we have Pr[A|B] ≥ Pr[A ∩ B]: True. [By def-
inition of conditional probability, Pr[A|B] = Pr[A ∩ B]/ Pr[B], and this is ≥ Pr[A ∩ B] since
Pr[B] ≤ 1.]

• Let A and B be events such that Pr[A|B] = Pr[A|B], where B denotes the complement of B.
Then A and B are independent: True. [Pr[A] = Pr[A ∩ B] + Pr[A ∩ B] = Pr[A|B] Pr[B] +
Pr[A|B] Pr[B] = Pr[A|B](Pr[B] + Pr[B]) = Pr[A|B]. (In the third step here we used the as-
sumption Pr[A|B] = Pr[A|B].) Hence A,B are independent.]

• For events A,B, the probability that neither of the events happens is 1 − Pr[A] − Pr[B]: False.
[The correct expression is 1− Pr[A]− Pr[B] + Pr[A ∩B].]

• For three events A,B, C, the probability that exactly one of the events happens is Pr[A]+Pr[B]+
Pr[C]−Pr[A∩B]−Pr[B ∩C]−Pr[A∩C] + 2 Pr[A∩B ∩C]: False. [The correct expression
is Pr[A] + Pr[B] + Pr[C]− 2 Pr[A ∩B]− 2 Pr[B ∩ C]− 2 Pr[A ∩ C] + 3 Pr[A ∩B ∩ C].]



• For any indicator (i.e., 0/1-valued) random variable X , E(X2) = E(X)2: False. [If Pr[X =
1] = p then we have E(X2) = E(X) = p but E(X)2 = p2. What is true, however, is that
E(X2) = E(X), simply because X2 = X for any 0/1-valued r.v..]

• For any random variable X , E(X) =
∑∞

k=0 Pr[X ≥ k]: False. [This equality holds only for
positive, integer-valued random variables (see proof in Lecture Note 15).]

• For any two random variables X, Y on the same probability space, E((2X + 1)(Y + 1)) =
2E(XY ) + 2E(X) + E(Y ) + 1: True. [This is an immediate consequence of linearity of expec-
tation.]

• For any two random variables X, Y on the same probability space, if E(X) > E(Y ) then
Pr[X > Y ] > 0: True. [Proof by contradiction: if Pr[X > Y ] = 0 then we always have
X ≤ Y , so clearly E(X) ≤ E(Y ).]

Multiple Choice 1 point for each correct answer; 0 points for incorrect answers 11pts

(b) You are dealt a hand of five cards from a randomly shuffled standard deck of 52 cards.

(i) The probability that your hand contains no pair of cards with the same numerical value (there are
13 numerical values: ace, 2, . . ., king) is

48 · 44 · 40 · 36
51 · 50 · 49 · 48

The number of hands of this form is (52 · 48 · 44 · 40 · 36)/5!: 52 choices for the first card, 48
for the second, 44 for the third, 40 for the fourth, 36 for the fifth. The total number of hands is
(52 · 51 · 50 · 49 · 48)/5!. The probability is the ratio of these two numbers.

(ii) The probability that the hand contains at least three cards of the same value is

13
(
4 ·
(
48
2

)
+ 48

)(
52
5

)
This can happen in two ways: three or four cards of the same value. The number of hands with
three cards of the same value is 13 · 4 ·

(
48
2

)
(13 choices for the value,

(
4
3

)
= 4 choices for the 3

suits,
(
48
2

)
choices for the remaining 2 cards); the number of hands with four cards of the same

value is 13 · 48 (13 choices for the value, 48 choices for the one remaining card).

(c) A fair six-sided die is thrown repeatedly.

(i) The expected number of throws until the first 6 appears is : 6.
The number of throws until 6 appears is a geometric r.v. with parameter p = 1

6 . The expectation
is 1

p = 6.
(ii) The expected number of throws until two 6’s have appeared is 12.

This is the sum of two r.v.’s as in part (i). By linearity of expectation, the expectation is just twice
that in part (i).

(iii) The expected number of throws until two different numbers have appeared is 11/5.
The first number appears for sure on the first throw. After this, the number of throws until a new
number appears is a geometric r.v. with parameter p = 5

6 , which has expectation 1
p = 6

5 .



(d) A book contains 106 characters. Each character is mis-typed with probability 10−5, independently of
all other characters.

(i) The expected number of mis-typed characters in the book is 10.
By linearity of expectation, the expectation is 106 × 10−5 = 10.

(ii) The probability that the book contains exactly seven mis-typed characters is approximately

e−10 107

7!

The number of mistyped characters is approximately Poisson with parameter λ = 10.

(e) The n volumes of an encyclopedia are arranged in a random sequence on a shelf, so that all n! orderings
are equally likely. Let π(i) denote the position of volume i in the sequence.

(i) The probability that π(1) < π(2) < π(3) is 1/6.
There are a total of 3! = 6 possible orderings of volumes 1, 2, 3, each of which is equally likely.
So the ordering π(1) < π(2) < π(3) has probability 1/6.

(ii) Conditional on the event π(1) < π(3), the probability that π(1) < π(2) < π(3) is 1/3.
We have Pr[π(1) < π(2) < π(3)|π(1) < π(3)] = Pr[(π(1) < π(2) < π(3)) ∩ (π(1) <
π(3)]/ Pr[π(1) < π(3)] = (1/6)/(1/2) = 1/3.

(f) Each cereal box contains one coupon, chosen independently and uniformly at random from a set of n
different coupons.

(i) The expected number of boxes that need to be bought before at least one copy of all n coupons is
obtained is on the order of n lnn.
This is just coupon collecting.

(ii) The number of boxes that need to be bought before the probability that some coupon appears
twice reaches 1/2 is on the order of

√
n.

The event that some coupon appears twice after a total of m boxes have been bought is the same
as the event that two people have the same birthday when the number of people is m and the
number of possible birthdays is n. From Lecture Note 13 we know that the probability of this
event reaches 1/2 when m is on the order of

√
n.

2. Euler and Hamilton [8 points]

(a) The graph in figure (a) has an Eulerian cycle but no Hamiltonian cycle.
One possible Eulerian cycle is: 2pts

[A,E, B, F,C,G,D, F,A]

We can see that there is no Hamiltonian cycle by observing that any path from A to (for instance) 2pts
C must pass through F ; however, to complete the cycle, it must return to A passing through F a
second time. Alternatively and more formally, observe that the graph is a bipartite graph with parts
{A,B, C, D} and {E,F, G}. We know that any cycle in a bipartite graph must have an even number
of vertices. Since our graph contains 7 vertices, at least one vertex must be visited more than once in
a cycle that visits all vertices at least once.

(b) The graph in figure (b) has no Eulerian cycle but has a Hamiltonian cycle.
By Euler’s theorem, a graph (with no isolated vertices) has an Eulerian cycle iff it is connected and 2pts
every vertex has even degree. Since vertices such as B have odd degree, the graph has no Eulerian
cycle.
A common mistake was to state that a graph has an Eulerian tour iff it is connected and has no more
than 2 odd vertices. This is the condition for Eulerian paths, not tours. This mistake did not usually
affect the correctness of the final answer.



One possible Hamiltonian cycle is: 2pts

[A,B, C, D, H,G, F, J,K,L, P,O,N, M, I,E, A]

A number of students gave an answer that was a Hamiltonian path (it visited all vertices once) but not
a Hamiltonian cycle (ending at the starting node)

Final Note: Several students mentioned hypercubes in their answers. However, neither of these graphs is a
hypercube!

3. Artistic Counting [14 points]

(a) The answer is 2pts
50!
40!

since this is the balls and bins variant where the balls are the 10 patrons (which are labeled) and the
bins are the 50 paintings (which are without replacement).
Most students answered this question correctly. The most common mistake was to treat the patrons as
unlabeled, yielding

(
50
40

)
possible sets of paintings that could be given away (but not accounting for

who gets which painting).

(b) The answer is 2pts(
50
40

)
since this is the unlabeled/without replacement balls and bins variant where the balls represent which
40 paintings are not selected and the bins are the 50 paintings.
Many students didn’t realize that sets are inherently unordered (e.g. the set {1,2,3} is the same as
{2,3,1}) and so gave the same answer to this part as the previous part.

(c) There are several ways to count this. One correct answer is 2pts

50!
40!

− 10 · 9 · 48!
40!

since there are 50!
40! total ways to give away the paintings, and we must subtract off the number of ways

such that both special paintings are given away: there are 10 choices for who gets the first special
painting, then 9 choices for who gets the other special painting, and then 48!

40! ways for the remaining 8
patrons to choose among the 48 non-special paintings. Another correct answer is((

50
10

)
−
(

48
8

))
· 10!

since
(
50
10

)
is the total number of sets of paintings and

(
48
8

)
is the number of sets of paintings that

include both special ones, and then after an acceptable set of 10 paintings is chosen there are 10! ways
to distribute them to the patrons. Another correct answer is

48!
38!

+ 2 · 10 · 48!
39!

since there are 48!
38! ways such that neither special painting is given away, and 10 · 48!

39! ways such that
the first special painting is given away but not the second, and similarly if the second special painting
is given away but not the first. Another correct answer is

2 · 49!
39!

− 48!
38!



since there are 49!
39! ways such that the first special painting is not given away (and similarly for the

second), but then we must subtract off the 48!
38! ways such that neither is given away.

Of course, all of the above answers evaluate to the same quantity!
Relatively few students had correct answers to this question, and there was an extremely wide range
of incorrect answers. Partial credit was very rarely given. A common wrong answer was 2 · 49!

39! , which
double-counts the cases in which neither special painting is given away.

(d) The answer is 2pts
5010

since this is the balls and bins variant where the balls are the 10 patrons (which are labeled) and the
bins are the 50 paintings (which are now with replacement).
The most common wrong answer was

(
59
10

)
, which corresponds to treating the patrons as unlabeled.

(e) The answer is 2pts(
59
10

)
since this is the balls and bins variant where the balls are unlabeled and the bins are with replacement.
The crucial difference from part (d) is that the printer only needs to know how many copies of each
painting to print; she doesn’t care which patron will receive each reproduction.
Several students confused this with other balls/bins variants, answering 5010 or

(
50
10

)
. A few people

applied the formula incorrectly and got answers such as
(
61
10

)
or
(
59
50

)
.

(f) The answer is 2pts(
54
5

)10

since each patron has
(
50+5−1

5

)
choices for the copies they receive (by unlabeled / with replacement

balls and bins), and the 10 patrons may choose independently.
A common wrong answer was 5050, presumably because students thought that each patron has 505

ways to choose 5 reproductions (which is not accurate since a patron only cares about how many of
each painting he got, and not about the order in which he receives his 5 copies). But 5050 all by
itself received no credit since it was not clear whether the 50 in the exponent was referring to the total
number of paintings (which would be a grievous misunderstanding).

(g) The answer is 2pts
50!
40!

· 4910

since there are 50!
40! ways for the patrons to choose their originals (by part a), and then each patron

independently has 49 choices for which reproduction to get (any one except the original he got).
Partial credit was only awarded for solutions quite close to the correct answer. Some students wrote
5010 · 49!

39! , presumably trying to first count the ways to give away reproductions and then count the
ways to give away originals. This does not work since, for example, if the reproduction chosen by the
2nd patron is the same as the original chosen by the 1st patron, then the 2nd patron has 49 choices
for his reproduction (but would have only 48 choices if his reproduction is different from the original
chosen by the 1st patron).

4. Light Bulb Factory [12 points]

(a) Let A, B and C be the events that the light bulb comes from machines A, B, and C respectively. If 4pts
we define D as the event that the light bulb is defective, then applying the law of total probability (as



A, B, and C are disjoint events that cover the whole sample space):

Pr[D] = Pr[D ∩A] + Pr[D ∩B] + Pr[D ∩ C]
= Pr[D|A] Pr[A] + Pr[D|B] Pr[B] + Pr[D|C] Pr[C]

=
4

100
50
100

+
2

100
30
100

+
7

100
20
100

= 0.04

Some students confused Pr[D|A] (given in the problem) with Pr[D ∩A]. If students left their result as
a single fraction they were awarded full points, but we deducted points if the result was left as a sum
of several terms.

(b) Bayes’ rule lets us compute the conditional probability Pr[A|D] with Pr[D|A] (which is given in the 4pts
problem). Applying Bayes’ rule we obtain:

Pr[A|D] =
Pr[D|A] Pr[A]

Pr[D]
= 0.5

Pr[B|D] =
Pr[D|B] Pr[B]

Pr[D]
= 0.15

Pr[C|D] =
Pr[D|C] Pr[C]

Pr[D]
= 0.35

using Pr[D] computed in part (a).

If students had part (a) wrong, they were still awarded full credit as long as their calculation in part (b)
was correct.

(c) Let D2 be the event that a second light bulb coming from the same machine as the first one is defective. 4pts
In this part we are asked about Pr[D2|D], the probability that this second light bulb (coming from the
same machine as the first one) will be defective given that the first bulb was defective. By the law of
total probability:

Pr[D2|D] = Pr[D2|A,D] Pr[A|D] + Pr[D2|B,D] Pr[B|D] + Pr[D2|C,D] Pr[C|D]

Note that Pr[A|D], Pr[B|D] and Pr[C|D] were computed in part (b). Also, Pr[D2|A,D] = Pr[D2|A] =
Pr[D|A] as, conditioning on the event that the first light bulb was produced by machine A gives us that
the probability of the second light bulb being defective is only dependent on the machine that produced
it (similarly for B and C). Plugging in all the terms, we obtain that Pr[D2|D] = 0.0475. [Note that
the probability of being defective has increased (compared with Pr[D] = 0.04) as a result of having
already observed a defective light bulb that came from the same machine.]

Many people said that D2 and D were independent, but this is not true. If the second light bulb were
produced by a random machine (rather than by the same as the first one), then the events would be
independent, but the information that a previous bulb from the same machine was defective gives us
information about the second bulb.

5. Random Networking [10 points]

(a) The random variables X{i,j} are not mutually independent. The r.v.’s are mutually independent if and 3pts
only if conditioning on the values of any subset of the X{i,j} does not affect the distribution of any
other X{i,j}. But here we know that if people 1 and 2 get the same color, and also 1 and 3 get the same
color, then 2 and 3 for sure also get the same color. In other words the conditional probability

Pr[X{2,3} = 1 | (X{1,2} = 1) ∩ (X{1,3} = 1)] = 1,

while the unconditional probability of the same event is Pr[X{2,3} = 1] = 1
m , which is not the same.



Most people got this part wrong. The most common error was to claim that the r.v.’s are independent
because the hat colors are assigned independently. It is true that the hat colors themselves are mutually
independent, but the r.v.’s X{i,j} are not the same as the hat colors, so they do not automatically inherit
their independence properties. Another very common error was to say that the r.v.’s X{i,j} and X{k,l}
are independent for any two distinct pairs {i, j} and {k, l}, because if we know whether i, j get the
same color then this does not affect the probability that some other pair k, l gets the same color (even
if i = k or j = l). This is true, but it is not enough for mutual independence: for mutual independence,
we have to be able to condition on any subset, not just on one other event. Another way of saying this is
that the r.v.’s X{i,j} are pairwise independent (i.e., any two of them are independent) but not mutually
independent. For more on this point, see Q1 of HW10. Finally, some people simply stated that the
X{i,j} are not mutually independent but gave either no justification or an incorrect justification. Such
solutions did not receive any credit since it was impossible to distinguish them from random guessing.

(b) Note that X =
∑

i<j X{i,j}. Also, since each X{i,j} is an indicator r.v., we have 3pts

E(X{i,j}) = Pr[X{i,j} = 1] = Pr[i, j get the same color hat] =
1
m

.

By linearity of expectation, we have

E(X) =
∑
i<j

E(X{i,j}) =
(

n

2

)
1
m

,

since there are
(
n
2

)
pairs {i, j}.

Many people got this right. The most common error was to say that X has a binomial distribution with(
n
2

)
coin tosses and Heads probability p = 1

m . While this gives the correct value for the expectation,
it is a seriously wrong derivation because the X{i,j} are not independent (as would be required for a
binomial distribution). As the above derivation shows, however, all we need is linearity of expectation,
and this holds regardless of whether the X{i,j} are independent. Another common error was to say
that Pr[X{i,j} = 1] = 1

m2 , because (say) the probability that both i and j get the color blue is
1
m × 1

m = 1
m2 ; but this does not take account of the fact that there are m possibilities for the color, so

we have to multiply this probability by m, getting 1
m as in the above argument. Yet another error made

by several students was to write X =
(
Z1

2

)
+
(
Z2

2

)
+ . . . +

(
Zm

2

)
, where Zk is the number of people

who receive hats with color k; this is OK, but the problem is that it’s not so easy to compute E(
(
Zk
2

)
).

(It’s easy to compute E(Zk) = n
m , but it’s not true that E(

(
Zk
2

)
) =

(
E(Zk)

2

)
=
(
n/m

2

)
as several

people claimed.) Partial credit was awarded for mentioning linearity of expectation, for computing
Pr[X{i,j} = 1], and for computing the number of pairs, provided the overall framework of the solution
was evident.

(c) The random variable Y can be written as the sum Y =
∑

i6=j Yi, where j is the number of Jason Nerd, 2pts
and Yi (for i 6= j) is the indicator r.v. of the event that person i gets the same color hat as Jason. Now
the Yi are mutually independent (knowing that some bunch of people do or do not have the same color
hat as Jason does not affect that probability that some other person has the same color as Jason), and
Pr[Yi = 1] = 1

m . Hence Y is the sum of n − 1 independent coin tosses, each with Heads probability
1
m , so Y has the binomial distribution Bin(n− 1, 1

m).

Most people got this right. A common error was to write n rather than n − 1, forgetting that Jason
himself is excluded from the sum over Yi; we did not penalize this minor error. Students who just wrote
“binomial” without specifying the parameters lost a point.

(d) From part (c), E(Y ) is the expectation of a Bin(n−1, 1
m) r.v., which we know from class is (n−1)× 1

m . 2pts

Most people got this right, modulo the minor error n vs n− 1 carried over from part (c).


