1. Propositional Logic

[Def.] A proposition is a sentence that declares a fact, that is either true or false, but not both.

E.g. Which of the following are propositions?

- Berkeley is a city in the US / true prop.
- I+I=3 , false prop
- · Read this carefully X, not declarative
- Xty = Z X, declares somethings that's neither true nor false P.Q.R

Use letters to denote propositional variables, i.e. variables

that represent propositions

```
The truth value of a proposition is true(T) or false(F)
```

based on whether the proposition is a true proposition or not.

We can form new propositions from the dd ones.

• The disjunction of P and Q, denoted PVQ, is the prop " P or Q"

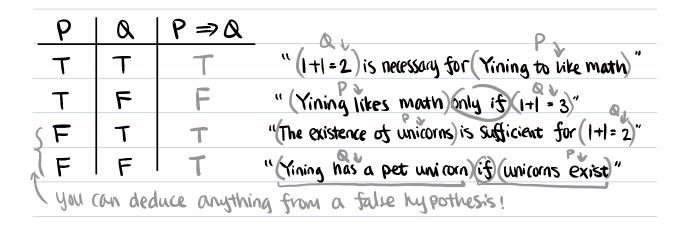
E.g.	(we all love discrete math) ~ (we all love probability the	eony)
)	a true prop since both clauses are true. "	•

Truth table for 7, 1, V you can think of them as functions.

P	Q	¬ P	PNQ	pva
Т	Т	F	Т	Т
Т	F	F	F	Т
F	Т	Т	F	T
F	F	Т	F	F

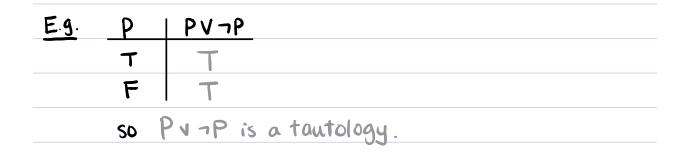
- Def. Let p, Q be prop hypothesis conclusion
 The implication p ⇒ Q is the prop " if P, then Q "
- The biconditional p <> Q is the prop

" P if and only if Q "



1.1 Propositional Equivalence

Def. A compound prop. that is always true regardless of the truth values of the prop. variables that occur in it is called a tautology, i.e. last column in the truth table only has T.

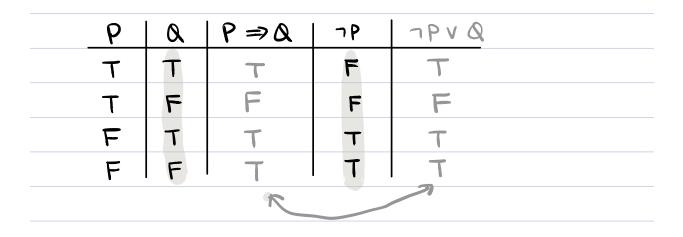


[Def.] Two compound prop. p and Q are logically equivalent, denoted p=Q, if P(=>Q is a tautology, i.e.

the last columns match.

E.g.	Р	Q	- (PAQ)	Ρ	Q	JPVJQ	
	Т	Т	F	T	т	F	
	Т	F	т	Т	F	τ	
	F	Т	т	F	Т	т	
	F	F	Т	F	F	Т	
	Den	lorga	n's Laws	distribute	and	Slip	
			ר <u>≡</u> (א				
	¬(Pve	x) = 「	PNZQ			

 $\underline{\mathsf{E.g.}} (\mathsf{P} \Rightarrow \mathsf{Q}) \equiv (\neg \mathsf{P} \lor \mathsf{Q})$



Rem.	Which	h one	is correct	t ?	nnerse	~	
Kem. Which one is correct: $O(P \Rightarrow Q) \equiv (Q \Rightarrow P)$ Converse $O(P \Rightarrow Q) \equiv (Q \Rightarrow P)$							
V) ھ	<i>? ⇒</i> 0	$R) \equiv (7R)$	=> ¬ P)			
	Р	Q	P⇒Q	Q⇒P	٦P	ר Q	¬ Q ⇒ ¬ P
	Ч	T	T	L	F	F	T
	Т	F	F	Т	F	Т	F
	F	т	т	F	Т	۴	Т
	F	F	T	Т	Т	Т	T

E.g. I'm Yining => I don't own an unicorn.

• COnverse: I don't own an unicorn => I'm Yining.

• contrapositive : I own an unicorn => I'm not Yining.

2. First-Order Logic

	P(x) is not a prop, because P(x) doesn't have a
	truth value.
	P(x) is called a propositional function
	Once we assign value to x, P(x) becomes a proposition
<u>=.g.</u>	Let $P(x,y)$ be the propositional function " $x > y''$.
	Then P(0,1) has truth value F

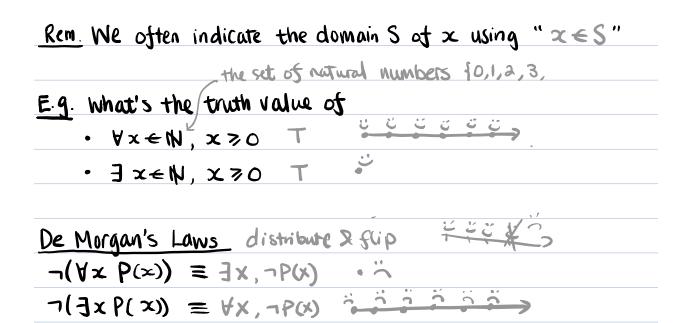
P(3,2) has truth value T

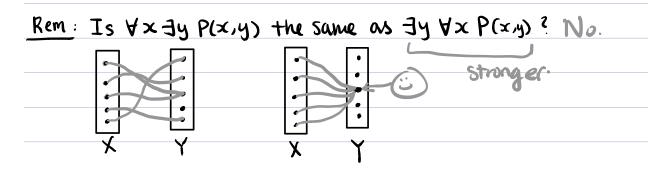
Another way to create a proposition from propositional function involves <u>quantifiers</u>

Def. The domain of a propositional function P(x) is

the set of all possible values of x.

Def.	•	We	use $\forall x P(x)$ to denote " $P(x)$ for each value of
		X	in the domain "
	•	we	ure <u>JxP(x)</u> to denote "there exists one element
		X	in the domain such that P(x)"





E.g. Assume we're in an universe with more than one person and more than one unicorn.

- i.e. " each unicorn has a owner"
- Jye {humm}, Yxe {unicorns}, youns x
 - i.e. " there's someone who owns all unicorns ".

Fun: One of us built JoinMe. Amin: Not me ٦A Khalil: Not me. ٦K Yining: Amin built it. A Only one of us is telling the truth. who built JoinMe? A: Amin built it, K: , Y: We know (AN-KN-Y) V (-ANKN-Y) $V(\neg A \land \neg K \land Y)$ (1)and (-ANKNAA) V(ANKNAA) $v(A \wedge K \wedge A)$ (2) \leq ($\neg A \land k$) v($A \land k$) \bigcirc 12 A . --F F Т