- Q: Suppose there're 25 students in your discussion. Which one is more likely?
 - 1) Therefree two students with the same birthday.
 - 2 everyone has different birthdays.

A proof is a finite list of logical deductions which establishes the truth of a statement.

1. Direct Proof
Groal: Prove P=>Q.
Method: Assume P.
Deduce Q.
integers
E.g. Def Given a, b = ZL, a = 0, we say a divides b,
written ab , if $\exists d \in \mathbb{Z}$, $ad = b$.
Prop $\forall a, b_1, b_2 \in \mathbb{Z}$, if alb, and alb_2 , then $alb_1 - b_2$.
P_{f} : Let $a, b_1, b_2 \in \mathbb{Z}$
Assume alb, and a 162
By definition, 3 d1, d2 = I such that
$ad_1 = b_1$, $ad_2 = b_2$.
Then, $b_1 - b_2 = ad_1 - ad_2 = a(d_1 - d_2)$
By definition, alb,-b2
Д
<u>Rem</u> . To prove ∀x, P(x),
pick an arbitrary C in the domain, and prove P(C).
· To prove $\exists x, P(x), \overset{\circ}{}$
find one element d in the domain and show P(d).
¥

2. Proof by Controposition.

Recall the contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$

<u>Goal</u>: Prove P=>Q. Method: Prove ¬Q => ¬P.

E.g. Prop Let $n \in \mathbb{Z}$. Prove that if n^2 is even, then n is even. attempt direct proof: n^2 is even $\Rightarrow \exists k \in \mathbb{Z}$, $n^2 = 2k$ $\Rightarrow n = \pm \sqrt{2k}$??? Pf: Equivalent, we'll prove n is odd $\Rightarrow n^2$ is odd. Assume n is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Thus, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$ $= 2(2k^2 + 2k) + 1$ By definition, n^2 is odd.

3. Proof by Contradiction

Goal: Prove P

Method: Assume 7P.

Deduce R MAR for some R.

E.g. Des A real number r is rational if there exist P. 9 EZ
with $q \neq 0$, such that $r = \frac{p}{q}$.
Prop: Let $\overline{A2}$ be a solution to $x^2 = 2$.
Then $\sqrt{2}$ is irrational.
PS: Assume TZ is rational.
Let $P, q \in \mathbb{Z}, q \neq 0$, be such that $n\Sigma = \frac{P}{q}$.
Notice that we can pick p, q such that p, q
don't have common divisors.
By the definition of 12,
$(\sqrt{2})^{2} = (\frac{p}{q})^{2} = \frac{p^{2}}{q^{2}} = 2$
=> $p^2 = 2q^2 = p^2$ is even => P is even
By definition, P = ak for some k = ZL
Then $p^2 = (2k)^2 = 4k^2 = 2q^2$
$=72k^{2}=q^{2}$
=) q ² is even =) q is even.
Contradict with P. q. having no common divisor,
=7 1/2 must be irrational.

E.g. Def.	A prime number is a natural number greater than 1
	whose only positive divisors are I and itself.
Prop.	There are infinite many prime numbers.
<u>Pf</u> :	Assume there are finitely many primes Pi,, Pn.
	(onsider q = P,Pn+1. => 1 = q - P,Pn.
	Since q + Pi for i=1,, n, q, is not prime.
	Suppose P is a prime divisor of Q.
	Since Plq, PlpPn, thus plq-PPn,
	i.e. Pl, contradiction.
	Thus, there are infinitely many primes.

4. Miscellaneous

To prove equivalence, i.e. p ⇐ Q, we show P ⇒ Q
and Q ⇒ P

Oftentimes, proof of equivalence is phrased as

"if and only if " (iff).

WLOG

• "without loss of generality, [assumption]" means the assumption that follows is chosen arbitrarily, narrowing down the statement to a particular case, but does not affect the validity of the proof in general. E.g. Prop Let x, y ∈ Z. If (both xy and x+y are even), then both x and y are even. <u>Pf</u>: (contrapositive : either x is odd or y is odd => either xy is odd or X+y is odd WLOG, assume x is odd, i.e. x = 2m+1 for some m ∈ Z.

Sometimes it's useful to divide up proof into exhaustive cases.

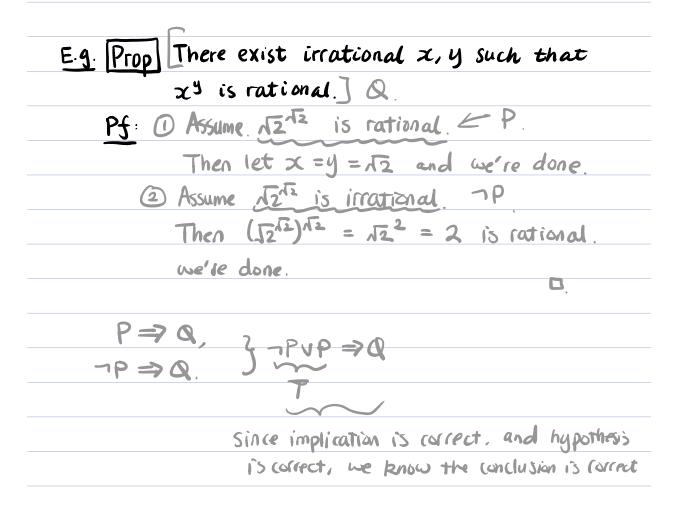
Pf (cont.): We want show either xy is odd or
Xty is odd.
Case I: y is even
Then y=2n for some n EZL
Hence $X+y = 2m+1 + 2n = 2(m+n)+1$
is odd.
Case 2: y is odd
Then y=2ntl for some n=ZL
Hence $XY = (2m+1)(2n+1)$
= 4mn + 2m + 2n + 1
= 2(2mn+m+n) + 1
is odd.
This proves the state ment by contraposition.

Constructive Existence Proofs:
Recall that to show "∃xP(x)", find an element a such that P(a) is true.

E.g. Prop There exist irrational x, y such that x^y is rational.

Pf: Let
$$x = e$$
, $y = ln 2$. Then $x^{y} = e^{ln^{2}} = 2$.

· Nonconstructive Existance Proof.



NTS P => Q
Assume P, CTOON: Prove Q.
CTOOL: Prove Q