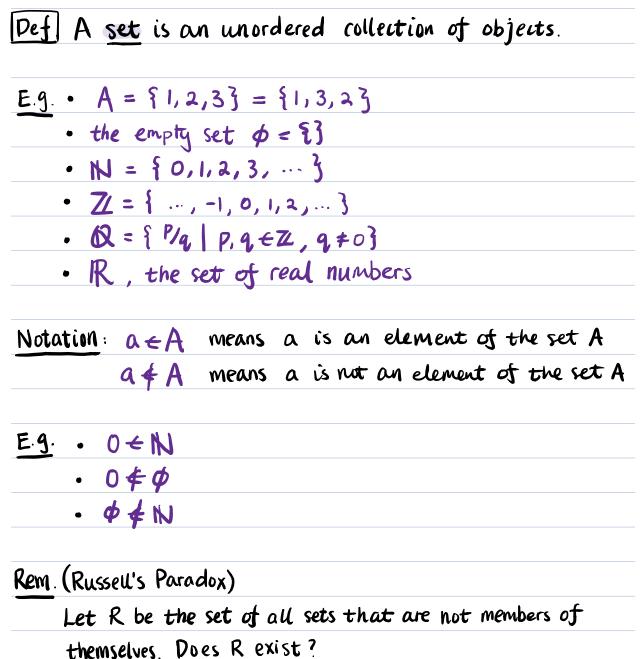
Q: Yining talks to someone about math iff they don't talk to themselves about math. Does Yining talk to herself about math?

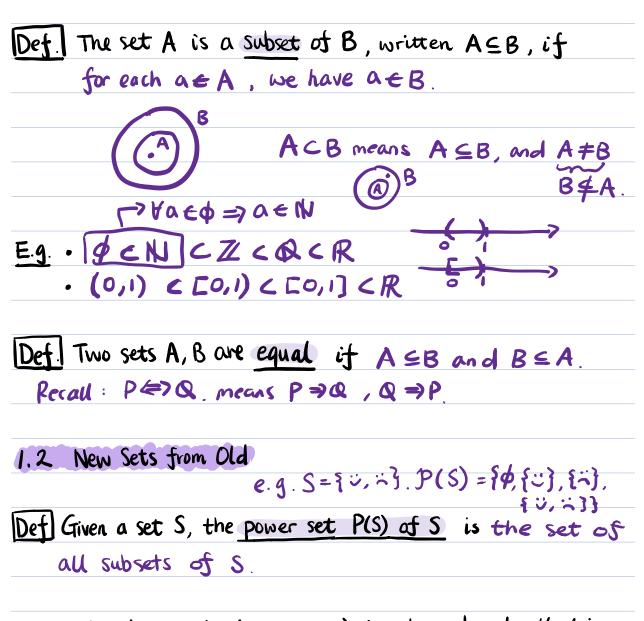
Q : $\{\phi\} \leq N$? . True · False Q: does f represent a well-defined function? (a) Yes! ۹. b >. e C f (b) $f(x) = \frac{1}{x}$, $x \in \mathbb{R}$ No (not defined at 0)

1. Set

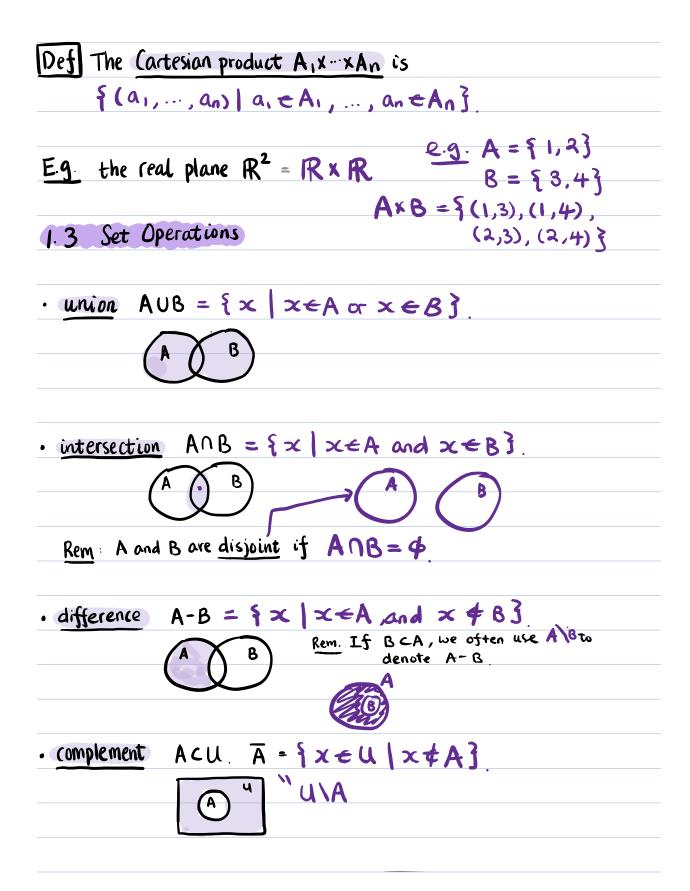


Let $R = \{x \mid x \notin x\}$ $R \in R \Rightarrow R \notin R$; $R \notin R \Rightarrow R \in R$ $\Rightarrow R \in R \iff R \notin R$; so R doesn't exist.

1.1 Comparing Sets



An <u>ordered n-tuple</u> (a1, a2,..., an) is the ordered collection has a1 as its first element, a2 as its second element, ..., and an as its nth element.



<u>AUB</u> <u>E.g.</u> Prove AUB = A OB
Pf: O We will show AUB ≤ ANB.
Let $x \in AUB$, that is $x \notin AUB$.
Thus, $x \notin A$ and $x \notin B$.
So $x \in \overline{A}$ and $x \in \overline{B}$
Thus x E A D B.
② We will show A∩B ≤ AUB.
Let $x \in \overline{A} \cap \overline{B}$, that is $x \in \overline{A}$ and $x \in \overline{B}$.
so $x \neq A$, and $x \neq B$,
Then x & AUB.
Thus, XE AUB.

2 Functions

- Def Let A, B be nonempty sets. A function f from A to B, written f: A→B, is an assignment of exactly one element of B to each element of A.
- $\frac{E_{g}}{f(dog)} = animal, furniture}$
 - $f: \mathbb{N} \rightarrow \mathbb{N}$ such that f(x) = x + 1
 - · a computer program

Def If
$$f A \rightarrow B$$
, we say A is the domain of f , and B is the codomain of f

Def Let $g: A \rightarrow B$ and $f: B \rightarrow c$ be functions. The <u>composition of</u> <u>f and g</u>, denoted f og, is a function from A to C defined by $(f \circ g)(a) = f(g(a))$. A $g \rightarrow B f f(g(a))$ $f \circ g$

2.1 Injection and Surjection

 $\begin{array}{l} A_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2) \\ \hline Def A \text{ function } f: A \rightarrow B \text{ is injective or one-to-one} & \text{if} \\ f(a_1) = f(a_2) \implies A_1 = a_2 \text{ , for all } a_1, a_2 \in A \end{array}$

Eq.
$$\frac{1}{2}:$$

$$E \cdot q \cdot \frac{1}{4} \cdot \frac{1}{5} \cdot \frac{1}{7}$$

$$f : \mathbb{N} \to \mathbb{Z} \text{ such that } f(x) = |x| \quad \text{not Surjection.}$$

$$f : \mathbb{Z} \to \mathbb{N} \text{ such that } f(x) = |x| \quad \text{surjection.}$$

$$f : \mathbb{Z} \to \mathbb{Z} \text{ such that } f(x) = |x| \quad \text{not a surjection.}$$

Rem. To show f is injective, show $\forall a_1, a_2 \in A$, $f(a_1) = f(a_2) = a_1 = a_2$. To show f is surjective, show $\forall b \in B$, find $a \in A$, s.t. f(a) = b. analogy: A labelled balls, B labelled bins. S: person.

2.2 Bijections

Def. f: A -> B is a bijection or one-to-one correspondence if f is both injective and surjective.

E.g. identity function
$$i_A : A \rightarrow A$$
 bijection.
 $f: R \rightarrow R^+$ where $f(x) = e^x$
 $f: R^+ \rightarrow R$ where $f(x) = \log x$

Def Let $f: A \rightarrow B$ be a bijection. The inverse function of f, denoted $f^{-1}: B \rightarrow A$, is defined by $f^{-1}(b) = a$ when f(a) = b $A \xrightarrow{f^{-1}} B \xrightarrow{f^{-1}} 3$

<u>**Rem</u>: Let f: A \rightarrow B be a bijection**.</u> • $f^{-1} \circ f = id_A$; $f \circ f^{-1} = id_B$ ß • (f⁻¹)⁻¹ = f

E.q.
$$f: \mathbb{R} \to \mathbb{R}$$
 with $f(x) = x$ $f^{-1}(y) = y$
 $\cdot f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x+1$ $f^{-1}(y) = y-1$
 $\cdot f: \mathbb{R} \to \mathbb{R}^{+}$ with $f(x) = e^{x}$ $f^{-1}(y) = \log y$
Nonnegative real.
edit: positive reals!
 $f: \mathbb{R} \to \mathbb{R}$ nonnegative reals} is not a bijection.
Do you see vhy?