Q: There're	e more rea	l numbers	in $E0, \frac{1}{10}$, ooo] than	all ration
number	۶.				
• True					
. False					

1. Cardinality of sets

Def. Let S be a set. If there are exactly
$$n \in \mathbb{N}$$
 distinct
elements in S, we say S is a finite set with cardinality
n.

Notation [5] denotes cardinality of S.

$$A = \{0, 1, 2, 3, 4\}$$

$$E.g. \cdot A = \{n \in \mathbb{N} \mid n < 5\} \mid |A| = 5$$

$$\cdot |\Phi| = 0$$

$$\cdot |\{0\}| = 1$$

E.g. Let S be the set of even integers. Prove that
$$|S| = |Z|$$

Pf: $S = 1 \dots, -4, -2, 0, 2, 4, \dots$
 $Z = S \dots, -2, -1, 0, 1, 2, \dots$
(onsider $f : Z \rightarrow S$ such that $f(n) = 2n$.
 $O[To show f is injective] f(a) = f(b) \Rightarrow a = b$.
Suppose $f(a) = f(b)$ for some $a, b \in Z$.

Thus, $2a = 2b$. =) $a = b$.	
Thus, f is injective.	
@ [To show f is surjective]	z f,s
het seS.	? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Then $\frac{1}{2}S \in \mathbb{Z}$. Furthermore,	$f(\frac{1}{2}s) = 2 \cdot \frac{1}{2} \cdot S = S.$
Thus, f is surjective.	

Def A set that is finite or has the same cardinality as N is called Countable.

<u>Rem</u>. An infinite set S is countable if we can list elements in S in a sequence a_0, a_1, a_2, \dots because $f: \mathbb{N} \to S$ given by $f(n) = a_n$ is a bijection.

Eg. \mathbb{Z} is countable.

0, 1, -1, 2, -2, 3, -3, ...

• The set of finite length bit strings is countable.

0, 1, 00, 0, 10, 11, 000, 00, 010, ...

[A] $\leq |B|$ [Imm] (Schröder - Bernstein) If there exist injections $f \cdot A \rightarrow B$ and $g : B \rightarrow A$ between sets A and B, then there exists a bijection $h : A \rightarrow B$

Qt is countable. Cor. 20,1,2,... 3 Obviously, there's an injection from N to Qt. Pf: We need to find an injection from Q+ to N. Recall that $Q^+ = \frac{1}{2} \frac{p}{q} = \frac{p}{2} \frac{q}{2} \frac{p}{2} \frac{q}{2} \frac{q}{2}$ a0 (1) Q1 02 . - . 4 ... $q \mapsto \min\{n: a_n = q\}$ is an injection from \mathbb{Q}^+ to \mathbb{N} . SD $\Rightarrow |Q^{\dagger}| = |N|$ ם

Rem. It follows that Q is countable as well.

1.1 Cantor diagonalization argument

Thm	R is uncountable.	
Pf:	Assume R is countable.	
	Since [0,1] < R, [0,1] is countable.	
	List elements in [0,1] as ro, r1, r2,	• .
	Let the decimal representation of the	
	$\Gamma_0 = 0. d_{o0} d_{o1} d_{o2} \dots$	$\Gamma_0 = 0.00000 \cdots$
	$\Gamma_1 = 0. d_{10} d_{11} d_{12} \cdots$	$\Gamma_1 = 0.1415926$
	$\Gamma_2 = 0.d_{10} d_{11} d_{12} \dots$	$\Gamma_2 = 0.3261 \cdots$
	• • •	:
	Form a real number with decimal expansion	Γ = 0.100
	$\Gamma = 0. d_0 d_1 d_2 \cdots$ it di	git of Ti
	Such that di = { 1 if dii = 0	
	Such that $di = \begin{cases} 1 & \text{if } dii = 0 \\ 0 & \text{if } dii \neq 0 \end{cases}$	
	Then r differs at the ith digit with	Γ_i , so $\forall i$, $r \neq \Gamma_i$
	=) r is a real number not on our lis	/
	Hence, [0,1] is not countable, so R is,	rot countable.

Rem. Similarly, the set of infinite length bit strings is uncountable.

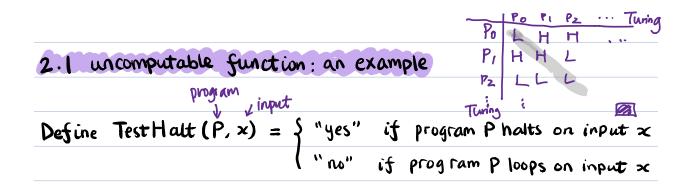
	finite infinite
Rem. Be careful with uncountable sets!	ACNCZCOCR
$\sum_{n=1}^{\infty} (\underline{j})^n = 1.$ However $\sum X_r = \infty$.	Countable unconstable
TEK Xr>0	

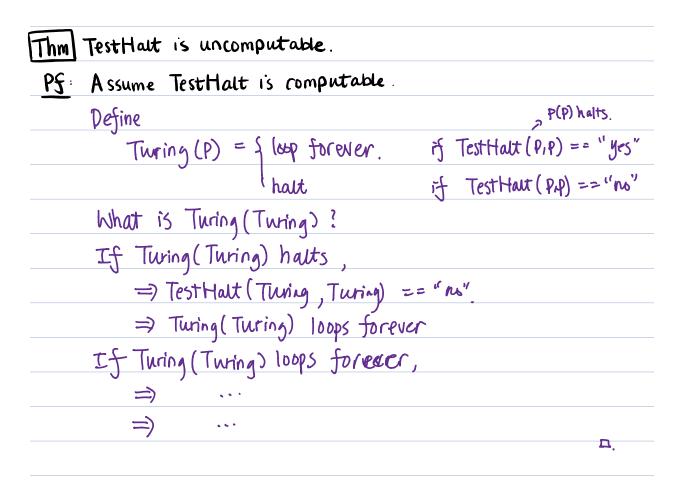
2. Uncomputable Functions

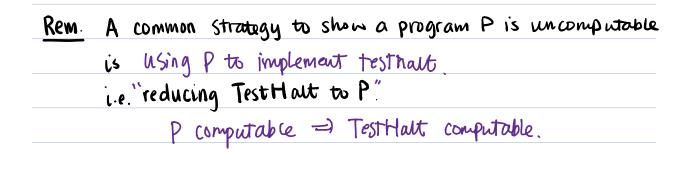
Def. A function is <u>computable</u> if there is a computer program in some programming language that finds the value of this function.

om NV to NV
Δ.
·

=) there're are un computable. functions.







Prop A is countable. Given B ≤ A, then B is countable.
<u>Pf</u> : The statement obviously holds if A or B is finite.
So assume A, B are infinite.
A is countable => ∃ bijection f : A → N
Restrict f on $B \subseteq A$ to get $f: B \rightarrow N$, an injection.
Then $f: B \rightarrow f(B)$ is a bijection
<u>Claim</u> : An infinite subset N of N is countable.
<u>Pf (of the chain)</u> : Define g: N -> N recursively by
$g(0) = \min N.$ $g(n+1) = \min \{n \in \mathbb{N} \mid n > g(n)\}.$
Then by construction, glo) is a bijection.
Since f(B) is an infinite subject of N, by the claim, f(B) is
countable, i.e. there exists a bijection g: f(B) -> N)
Thus, $g \circ f : B \rightarrow N$ is a bijection, i.e. B is countable.
$B \xrightarrow{f} f(B) \xrightarrow{g} f(b)$