

Q: Is it possible to design the streets without crossing?

1. Planar Graphs

Def A graph is called planar if it can be drawn in the plane without any edges crossing. Such a drawing is called a planar representation of the graph.

Thm. (Ewler's Formula) G is a connected planar graph. Let v = # vertices, e = # edges, f = # faces in a planar representation of G. Then v - e + f = 2. Pf: We'll do induction on e. Base case: e = 0 1 - 0 + 1 = 2. Triductive Step: Consider G connected, has e edges. • If G is tree, then V = e + 1, f = 1. Since (e+1) - e + 1 = 2, the formula holds.

K Euler characteristic.

1.2 Kuratowski's Theorem

- Def An operation on G by removing an edge fu,v} and adding a new vertex w together with edges {u,w}, fv,w} is an elementary subdivision.
- <u>Rem</u>. If G is planar, after performing an elementary subdivision on G, G remains planar.
- [Def] G, and G₂ are <u>homeomorphic</u> if they can be obtained from the same graph by a sequence of elementary subdivisions.

Thm A graph is nonplanar if and only if it contains a subgraph homeomorphic to K3,3 or K5.

Frop. Gt is a planar graph
$$\Rightarrow \chi(G) = 4$$
.
Prop. Gt is a planar graph $\Rightarrow \chi(G) \leq 6$, $\sum_{v \in V} d_{ig}(v)$.
Pf: Since $e \leq 3V-6$, total/degree $2e \leq 6V-12$.
 \Rightarrow average degree $\frac{6V-12}{2} = 6 - \frac{12}{2} \leq 6$.
 $\Rightarrow \exists v \in V$ s.t. $d_{ig}(v) \leq 5$.
We'll now do induction on $|V|$.
Base case: $|V| = 1$. • $\chi(G) = 1$. V .
Inductive Step: Remove a vertex V with degree ≤ 5 .
By IH, the resulting Subgraph G' has $\chi(G') \leq 6$.
Color G' using ≤ 6 (clors $\int C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{63}$.
Now color V .
Since deg(v) ≤ 5 , there's an available color among $C_{1}, ..., C_{6}$.

