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Lecture 10: Cryptography

Credit: https://xkcd.com/177/
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Basic Setup

Credit: https://flylib.com/books/en/1.581.1.188/1/
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Recall: XOR

Recall the XOR operation:

x y x � y
0 0 0
0 1 1
1 0 1
1 1 0

Notice that for any bits x , b we have (x � b)� b = x
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One-Time Pad

Alice (the sender) wants to send a n-bit message m to Bob (the
receiver).

Setup:

I Alice and Bob generate a random key k .

Encryption:

I Alice encrypts c = E (m) := m � k .

Decryption:

I Bob decrypts D(c) := c � k .

Notice that D(E (m)) = (m� k)� k = m, i.e. Bob always receives
the message Alice sent.
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One-Time Pad: Disadvantages

One-Time Pad is the only existing mathematically unbreakable
encryption. But if only one of the following is not met, it is no
longer unbreakable:

I k is at least as long as m;

I k truly random (not generated by a simple computer
function);

I each key is used only once;

I there should only be two copies of the key; one for Alice and
one for Bob.
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one for Bob.

But what if I (Alice) want to send my credit card information to
Amazon (Bob) to make a purchase?

I Not practical; I would need to somehow communicate with
Amazon to agree on a key for every single purchase.

I And every single user would’ve had to do this.
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I public keys: everyone knows!

I private keys: only Bob knows.
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RSA Protocol

Everyone can send messages to Bob.
For now, let’s say Alice wants to send a message m to Bob.

Setup:

I Bob chooses two large (2048-bit) distinct primes p, q.

I Bob chooses e such that gcd(e, (p � 1)(q � 1)) = 1.

I the public key is (N, e), where N = pq.

I Bob computes the private key d := e�1 mod (p � 1)(q � 1).

Encryption:

I Alice encrypts c = E (m) := me mod N

Decryption:

I Bob decrypts D(c) := cd mod N
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# TODO

We need to analyze:

I Correctness: D(E (m)) = m?

I E�ciency: Can Alice and Bob perform their steps e�ciently?

I Security: Can Eve break it?
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Fermat’s Little Theorem

Theorem: Let p be a prime and a 6⌘ 0 (mod p). Then

ap�1 ⌘ 1 (mod p).

Proof.

f
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RSA correctness

Theorem: Let D,E be the RSA decryption and RSA encryption
functions respectively. Then D(E (m)) = m, i.e. RSA protocol
always decrypts correctly.

Proof.

FLT primeP and M 0 mod
mic

Let med.fm
e MlmodN N pq
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uniquemodulo N pqNotice that x m is a solution ie x m modN
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RSA E�ciency

Setup

I Bob chooses two large distinct primes p and q.
how???

I Bob chooses e such that gcd(e, (p � 1)(q � 1)) = 1.
how??? (choose a prime, like 3)

I Bob computes d := e�1 mod (p � 1)(q � 1).
how??? (extended Euclidean algorithm is fast!)

Encryption:

I Alice encrypts c = E (m) := me mod N.
how??? (repeated squaring is fast!)

Decryption:

I Bob decrypts D(c) := cd mod N.
how??? (repeated squaring is fast!)

e si gcdCe CpDogD



13/20

RSA E�ciency

Setup

I Bob chooses two large distinct primes p and q.
how???

I Bob chooses e such that gcd(e, (p � 1)(q � 1)) = 1.
how??? (choose a prime, like 3)

I Bob computes d := e�1 mod (p � 1)(q � 1).
how??? (extended Euclidean algorithm is fast!)

Encryption:

I Alice encrypts c = E (m) := me mod N.
how??? (repeated squaring is fast!)

Decryption:

I Bob decrypts D(c) := cd mod N.
how??? (repeated squaring is fast!)

e 1mod pDcgD



13/20

RSA E�ciency

Setup

I Bob chooses two large distinct primes p and q.
how???

I Bob chooses e such that gcd(e, (p � 1)(q � 1)) = 1.
how??? (choose a prime, like 3)

I Bob computes d := e�1 mod (p � 1)(q � 1).
how??? (extended Euclidean algorithm is fast!)

Encryption:

I Alice encrypts c = E (m) := me mod N.
how??? (repeated squaring is fast!)

Decryption:

I Bob decrypts D(c) := cd mod N.
how??? (repeated squaring is fast!)

Elm me N



13/20

RSA E�ciency

Setup

I Bob chooses two large distinct primes p and q.
how???

I Bob chooses e such that gcd(e, (p � 1)(q � 1)) = 1.
how??? (choose a prime, like 3)

I Bob computes d := e�1 mod (p � 1)(q � 1).
how??? (extended Euclidean algorithm is fast!)

Encryption:

I Alice encrypts c = E (m) := me mod N.
how??? (repeated squaring is fast!)

Decryption:

I Bob decrypts D(c) := cd mod N.
how??? (repeated squaring is fast!)

D c Cd N



13/20

RSA E�ciency

Setup

I Bob chooses two large distinct primes p and q.
how???

I Bob chooses e such that gcd(e, (p � 1)(q � 1)) = 1.
how??? (choose a prime, like 3)

I Bob computes d := e�1 mod (p � 1)(q � 1).
how??? (extended Euclidean algorithm is fast!)

Encryption:

I Alice encrypts c = E (m) := me mod N.
how??? (repeated squaring is fast!)

Decryption:

I Bob decrypts D(c) := cd mod N.
how??? (repeated squaring is fast!)



14/20

RSA E�ciency: Sampling Primes

We need two large (2048-bit) primes.

I By the Prime Number Theorem, number of primes  N is at
least N

ln(N) .

I We need to generate and check ⇡ lnN primes. This is linear
in the number of bits of N.

I ...but how to check primes?

I there is an e�cient algorithm that tests if N is prime
(polynomial time in the number of bits of N).
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RSA Security

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
e�cient algorithm for finding m.

We believe Eve cannot break RSA.

I Eve can break RSA by factoring N = pq to get (p � 1)(q � 1)
to compute d .

I But prime factorization is hard!

I For large N, no e�cient, non-quantum algorithm is known.
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Replay Attack

Does Eve really need to know d to attack?

I Suppose my credit card number is m.

I I send Amazon E (m) to make a purchase.

I Eve can’t recover m from E (m).

I But Eve was listening to our communication and now she
knows E (m).

I Eve sends E (m) to Amazon.

I Now Eve can use my credit card.
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Defense Against Replay Attacks

Even secure protocol can be vulnerable, need careful
implementation.

To defend against replay attacks,

I before encrypt m, randomly generate a string s.

I Send E (concatenate(m, s)).

I If Amazon gets same message twice, reject.



17/20

Defense Against Replay Attacks

Even secure protocol can be vulnerable, need careful
implementation.

To defend against replay attacks,

I before encrypt m, randomly generate a string s.

I Send E (concatenate(m, s)).

I If Amazon gets same message twice, reject.



17/20

Defense Against Replay Attacks

Even secure protocol can be vulnerable, need careful
implementation.

To defend against replay attacks,

I before encrypt m, randomly generate a string s.

I Send E (concatenate(m, s)).

I If Amazon gets same message twice, reject.



18/20

Flipping RSA: Digital Signature

RSA can be used as in proof of identity.

I How does Alice know the receiver is Bob?

I Bob could prove his identity by showing Alice d , but he
doesn’t want to do that.

I Alice chooses a message m and asks Bob to send her md

mod N.

I Alice can verify (md)e ⌘ m (mod N).
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Digital Signature Attack

Should Bob sign arbitrary messages?

I Alice encrypts a top-secret message m and sends it to Bob.

I Eve intercepts the cipher E (m).

I Eve chooses a number r and asks Bob to sign r eE (m).

I Bob agrees and sends Eve (r eE (m))d mod N.

I Now Eve knows (r eE (m))d ⌘ r edmed ⌘ rm (mod N).

I Eve knows r ; so Eve computes r�1 mod N to recover m.
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THE END!

Thank you for coming!


