The Central Limit Theorem, Confidence Intervals Lec.25

August 4, 2020

CLT Fundamental Idea

For i.i.d. random variables X_i each with mean μ and variance σ^2 , $S_n = \sum_{i=1}^n X_i$.

While the LLN tells us S_n/n is unlikely to be far from the true mean μ as $n \to \infty$, the Central Limit Theorem tells us that the distribution of $\frac{S_n}{n}$ approaches $\mathcal{N}(\mu, \frac{\sigma^2}{n})$.

Note that here the limiting distribution depends on the value of n; we can standardize $\frac{S_n}{n}$ so that the limiting distribution is the standard normal distribution and does not change with n.

$$\mathbb{E}\left[\frac{s_{n}}{s_{n}}\right] = \frac{1}{n}\mathbb{E}\left[s_{n}\right] = \frac{1}{n}\cdot n\cdot \mu = \mu.$$

$$\operatorname{Var}\left[\frac{s_{n}}{s_{n}}\right] = \frac{1}{n^{2}}\operatorname{Var}\left[s_{n}\right] = \frac{1}{n^{2}}\cdot n\cdot \sigma^{2} = \frac{\sigma^{2}}{n^{2}}$$

CLT Definition

Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with common finite expectation $\mathbb{E}[X_i] = \mu$ and finite variance $\operatorname{Var}[X_i] = \sigma^2$. Let $S_n = \sum_{i=1}^n X_i$.

Then, the distribution of, $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges to $\mathcal{N}(0, 1)$ as $n \to \infty$. In other words, for any constant $c \in \mathbb{R}$,

 $\Phi(\cdot)$ is the cdf of the standard normal random variable.

What the CLT states is that the cdf of the standardized sample mean of the X_i converges to $\Phi(\cdot)$ as $n \to \infty$, regardless of the distribution of the X_i as long as their mean and variance are finite.

Confidence Intervals

$$\hat{\mu} = \frac{S_n}{n}$$

Provide a confidence level that the true parameter μ is with a certain range of the estimated parameter:

$$P(|\hat{\mu} - \mu| \le \epsilon) \ge 1 - \delta$$

Example: Polling

You can poll people in a population as to whether or not they approve of the current president. X_i is 1 if person *i* approves of the current president, and 0 otherwise. We model $X_i \sim Bernoulli(\mu)$. You want to estimate μ , the underlying proportion of the population that approves of the current president. You want to know how many people you need to poll in order to be 95% confident that you are within 0.03 of the true proportion μ .

Let $\hat{\mu}_n = \frac{2}{N} \frac{\chi_i}{n}$ sample mean. $\hat{\mu}_n = \frac{S_n}{n} = \frac{2S_n}{n}$ $\mathbb{E}[\hat{\mu}_n] = \frac{1}{n} \cdot \mathbb{E}[S_n] = \frac{1}{n} \cdot n \cdot \mu = \mu$. $Var[\hat{\mu}_n] = \frac{1}{n^2} \cdot Var(S_n) = \frac{n \cdot \mu(1-\mu)}{n^2}$

Example: Polling

You can poll people in a population as to whether or not they approve of the current president. X_i is 1 if person *i* approves of the current president, and 0 otherwise. We model $X_i \sim Bernoulli(\mu)$. You want to estimate μ , the underlying proportion of the population that approves of the current president. You want to know how many people you need to poll in order to be 95% confident that you are within 0.03 of the true proportion μ .

Let $\hat{\mu}_n = \frac{\sum_{i=1}^n X_i}{n}$ be our sample mean.

$$\mathbb{E}[\hat{\mu}_n] = \mathbb{E}\left[\frac{\sum_{i=1}^n X_i}{n}\right] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \frac{n\mu}{n} = \mu \qquad (1)$$

$$\operatorname{Var}[\hat{\mu}_{n}] = \operatorname{Var}[\frac{\sum_{i=1}^{n} X_{i}}{n}] = \frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}[X_{i}] \qquad (2)$$
$$= \frac{n\mu \cdot (1-\mu)}{n^{2}} = \frac{\mu \cdot (1-\mu)}{n} \qquad (3)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ 少へで

0.05 Example: Polling - Chebyshev 2 Var (ha- $P()\hat{\mu}_{n} - \mu \geq 0.03$ No.13 Pr At.03 0.03 Xi ~ Bern (pa) (な)= ~(1-~~) 0.05 کے 0,03 1112 · m(1-m) 4 0.05 $n \ge 1112 \cdot \mu(1-\mu) \cdot 20$ In the woord case, $\mu(1-\mu) =$ 4 $n \geq 5560$

Example: Polling - Chebyshev

For 95% confidence, the sample mean can deviate from the true mean by 0.03 or more with 5% probability,

$$P(|\hat{\mu}_n - \mu| > 0.03) \le \frac{\frac{\mu \cdot (1 - \mu)}{n}}{0.03^2} \le 0.05$$
(4)
$$1112 \frac{\mu (1 - \mu)}{n} \le 0.05$$
(5)

In the worst case (worst means more people required), $\mu(1-\mu)$ is as large as possible. The max value of $\mu(1-\mu) = \frac{1}{4}$. So,

$$1112 * \frac{1}{4n} \le 0.05 \tag{6}$$

$$\rightarrow 20 * 1112 \le 4n \tag{7}$$

$$\rightarrow 5 * 1112 \le n \tag{8}$$

(9)

(10)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

ightarrow 5560 \leq *n*

Example: Polling - CLT = X1+ . . + Xn $\sim \mathcal{N}(0,1)$ ñ-0.3 pi ñt.03 $\mu \cdot (1 - \mu)$ 03 0. $P(|\hat{\mu}_{n}-\mu|)$ m(1-m) = P(12 0.03Jn So P(21 > 4 Int(1-m) is at (JZ 1.96 (from table most Let d = 0.06 Jn, then 0.06Jn 21.96 $\mathbb{P}(|\mathcal{Z}| > \alpha) \leq 0.05$ $n \geq 1068$ $2(1-\underline{\pm}(\alpha)) \leq 0.05$ \Rightarrow $\mathbf{I}(\alpha) \geq 0.975$ 5900 《曰》《卽》《臣》《臣》 E.

Example: Polling - CLT

$$Z = \frac{\hat{\mu}_n - \mu}{\sqrt{\frac{\mu \cdot (1 - \mu)}{n}}} \to Z \sim \mathcal{N}(0, 1)$$

$$P(|\hat{\mu}_n - \mu| > 0.03) = P(|\frac{\hat{\mu}_n - \mu}{\sqrt{\frac{\mu \cdot (1 - \mu)}{n}}}| > \frac{0.03}{\sqrt{\frac{\mu \cdot (1 - \mu)}{n}}})$$
(11)
= $P(|Z| > \frac{0.03\sqrt{n}}{\sqrt{\mu \cdot (1 - \mu)}}) \le 0.05$ (12)

If we make the denominator larger, *n* will need to be larger in order to meet the confidence requirement. In the worst case, the denominator is $\frac{1}{2}$.

Example: Polling - CLT

So, in the worst case we need to satisfy:

$$P(|Z| > \frac{0.03\sqrt{n}}{1/2}) \le 0.05$$

 $P(|Z| > 0.06\sqrt{n}) \le 0.05$

Let $\alpha = 0.06\sqrt{n}$, then

$$P(|Z| > \alpha) \le 0.05$$
 (13)

 $2(1 - \Phi(\alpha)) \le 0.05$
 (14)

 $\Phi(\alpha) \ge 0.975$
 (15)

 $\rightarrow \alpha = 1.96$
 (16)

 $\rightarrow n \ge 1068$
 (17)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Standard Normal CDF Table

Introduction to Probability 2nd Ed. by D. Bertsekas and J. Te	sitsiklis	Athena	Scientific.	2008
---	-----------	--------	-------------	------

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	0699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

The standard normal table. The entries in this table provide the numerical values of $\Phi(y) = \mathbf{P}(Y \leq y)$, where Y is a standard normal random variable, for y between 0 and 3.49. For example, to find $\Phi(1.71)$, we look at the row corresponding to 1.7 and the column corresponding to 0.01. so that $\Phi(1.71) = .9564$. When y is negative, the value of $\Phi(y)$ can be found using the formula $\Phi(y) = 1 - \Phi(-y)$.

> x=1.96 $\overline{\Phi}(a) = .975$

.975 - I (a)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Markov Chains Previewo X, X, X2,... sequence of rondom variables Think of Xn as the state of a system at time n. L's Assume that time is discrete. No is the date (a) firme O L) Each Xi will take on values in some finite state space \mathcal{X} Ex: If $\mathcal{X} = \{1, 2\}$ Then Xo can either be 1 or 2. Consider Xo, X., ... Xn. want $P(X_{n}=x_{n}, X_{n}=x_{n}, \dots, X_{n}=x_{n})$ hard. Suy χ_i are independent. Then we actually need access Then this joint = $P(\chi_0=\chi_0) \cdot P(\chi_{=\chi_1}) \cdot P(\chi_{=\chi_1})$ for even $\chi_0, \chi_{=\chi_1}, \dots, \chi_{n=\chi_n}$ All the X: have complex dependencies Markov Property.

Think of Xn as the present/current state, and Xn+1 as the future state. The Markov Property is $(x_i) = P(x_i) = P(x_i)$

 $P(X_{n+1}=j|X_n=l,\ldots,n_{o}=l)=0$ "The future is conditionally independent of the past given the correct state"