Markov Chains I Lec.26

August 5, 2020

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ○ ミ ○ ○ ○ ○

We now wish to model sequences of random variables X_0, X_1, X_2, \ldots You can think of X_n as the state of a system at time n. The value, has they have on all come from X

We will be working on the setting where time is discrete, and each X_i can only take on a finite set of values. This finite set of values is denoted \mathcal{X} and is called the state space.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ∽ ♀ ⊙

Markov Property

Think of X_n be the present/current state, and X_{n+1} as the future state. The Markov Property is:

 $\Pr(X_{n+1} = j | X_n = i, ..., X_0 = i_0) = \Pr(X_{n+1} = j | X_n = i)$ This property is not saying the future is independent of the past. This property is saying that the past and future are <u>conditionally</u> *independent* given the present. We call $\Pr(X_{n+1} = j | X_n = i) = \Pr(i, j)$ the transition probability from state *i* to state *j*. In this class, we will only deal with time homogeneous Markov chains.

Transition Probability Matrix

Let the state space \mathcal{X} be $\{1, ..., k\}$. The transition probability matrix for a Markov chain P is a k by k matrix such that the entry in the *i*th row and *j* column is P(i, j), and: the post. of going have state i lostate j $P(i,j) \geq 0 \quad \forall i,j \in \mathcal{X}$ (1)"the rows of P " $\longrightarrow \sum_{j=1}^{n} P(i,j) = 1 \quad \forall i \in \mathcal{X}$ "the probability of going somewhere is I Note: P(i,i) is valid (you can go from a state buch) to the same state

Distribution Over States

If there are K states, Ti is a 1xK row vector.

We use π_i to represent the distrution of our random variable X_i over the states in \mathcal{X} . The entries in π_i must be probabilities that sum up to 1.

 π_0 is called our initial distribution. π_0 , in conjunction with P and \mathcal{X} fully specifies our Markov chain. i e F

$$\pi_n(i) = \mathbb{P}(\chi_n = i)$$
, where

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Moving in Time

Suppose at time n, X_n has distribution π_n . Then, by the Law of Total Probability, $P_{c}(X_{i}=i \wedge X_{n}=i)$ $\Pr(X_{n+1} = j) = \sum_{i} \Pr(X_{n+1} = j | X_n = i) \Pr(X_n = i) \quad (3)$ = $\sum_{i} \Pr(i, j) \pi_n(i) \qquad [] (4)$ But $\sum_{i} P(i,j)\pi_n(i)$ is the *j*th entry of $\pi_n P$. So, $\pi_i = \pi_i P$ $\pi_{n+1} = \pi_n P$ $\pi_{n+2} = \pi_n P = \pi_n P^2$ (5)(6)

 P^k is the probability transition matrix where the entry in the *i*th row *j*th column is the probability of going from state *i* to state *j* in *k* steps.

Hitting Time Example What is the average number of steps it takes to reach state 1 starting at state 2? 2^{2} 14 Let B(i) dende the average # of steps needed to reach state 1 starting from state i. B(1) = 0Then, $\beta(3) = | + \frac{3}{4} \cdot \beta(1) + \frac{1}{4} \cdot \beta(2)$ $B(2) = 1 + \frac{2}{3} \cdot \frac{B(2)}{2} + \frac{1}{3} \cdot \frac{B(3)}{3}$ 3 variables. She \Rightarrow B(i)=0 $B(2)=\frac{16}{3}$ 'S eqns, 月(3)= き ◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─ 5900

Probability of A before B Example
What is the probability of reaching
shale 3 before state 4, shorting from state 1?
Let
$$\alpha(i)$$
 be the probability of reaching
shale 3 before state 4, shorting from
state i
Then, $\alpha(3) = 1$
 $\alpha(4) = 0$
 $\alpha(2) = \frac{1}{2} \cdot \alpha(1) + \frac{1}{2} \cdot \alpha(3)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$
 $\alpha(1) = \frac{1}{2} \alpha(4) + \frac{1}{2} \cdot \alpha(3) + \frac{1}{2} \alpha(2)$

Invariant Distribution Definition

A distribution π is *invariant* for the transition probability matrix P if it satisfies the following *balance equations*:

$$\pi = \pi P \tag{7}$$

◆□ > ◆□ > ◆三 > ∢三 > ● ○ ○ ○ ○ ○

Stationary Distribution Existence

Let P be the probability transition matrix for a Markov chain.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The rows of <u>P</u> add up to 1. Let **1** be a column vector of ones. This means $P\mathbf{1} = \mathbf{1} = 1 \cdot \mathbf{1}$.

This means P has a right eigenvector corresponding to eigenvalue 1. Since the right and left eigenvalues of a square matrix are the same, this means there exists some left eigenvector π such that $\pi P = 1 \cdot \pi$.

Note that this does not say anything about the uniqueness of the stationary distribution.

Stationary Distribution Example 1/2 $\begin{bmatrix} 243 & 43 \\ 42 & 42 \end{bmatrix}$ P= 1 P= 0 1 $[T(1) T(2)] = [T(1) T(2)]^{2/3} \frac{1}{3}$ T = T P balance equips. [π(1) π(2) π(3)=[π(1) π(2) π(3)] $5 (\pi(1) = \pi(1) \frac{2}{3} + \pi(2) \frac{1}{2}$ $(\pi(2) : \pi(1) \cdot \gamma_3 + \eta(2) \binom{1}{2}$ $1 = \pi(1) = \pi(3)$ replace an replace an eqn $u_1^{(1)}$ T(1) + T(2) = 1Sel. $\pi(2) = \pi(1)$ egn · ~ **(**†(3) = #(2) $\Pi(1) + \Pi(2) + \Pi(3) = 1$ $\rightarrow \pi(1) = \frac{3}{5}$ $\pi(i) = Y_5$ π(2) = $\pi(2) = y_3$ $\pi(3) = \gamma_3$ ・ロト ・四ト ・ヨト ・ヨト Ξ. 5900